Branch data Line data Source code
1 : : /* SPDX-License-Identifier: GPL-2.0-or-later */
2 : : /*
3 : : * Scatterlist Cryptographic API.
4 : : *
5 : : * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
6 : : * Copyright (c) 2002 David S. Miller (davem@redhat.com)
7 : : * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
8 : : *
9 : : * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
10 : : * and Nettle, by Niels Möller.
11 : : */
12 : : #ifndef _LINUX_CRYPTO_H
13 : : #define _LINUX_CRYPTO_H
14 : :
15 : : #include <linux/atomic.h>
16 : : #include <linux/kernel.h>
17 : : #include <linux/list.h>
18 : : #include <linux/bug.h>
19 : : #include <linux/slab.h>
20 : : #include <linux/string.h>
21 : : #include <linux/uaccess.h>
22 : : #include <linux/completion.h>
23 : :
24 : : /*
25 : : * Autoloaded crypto modules should only use a prefixed name to avoid allowing
26 : : * arbitrary modules to be loaded. Loading from userspace may still need the
27 : : * unprefixed names, so retains those aliases as well.
28 : : * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
29 : : * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
30 : : * expands twice on the same line. Instead, use a separate base name for the
31 : : * alias.
32 : : */
33 : : #define MODULE_ALIAS_CRYPTO(name) \
34 : : __MODULE_INFO(alias, alias_userspace, name); \
35 : : __MODULE_INFO(alias, alias_crypto, "crypto-" name)
36 : :
37 : : /*
38 : : * Algorithm masks and types.
39 : : */
40 : : #define CRYPTO_ALG_TYPE_MASK 0x0000000f
41 : : #define CRYPTO_ALG_TYPE_CIPHER 0x00000001
42 : : #define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
43 : : #define CRYPTO_ALG_TYPE_AEAD 0x00000003
44 : : #define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004
45 : : #define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005
46 : : #define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005
47 : : #define CRYPTO_ALG_TYPE_KPP 0x00000008
48 : : #define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a
49 : : #define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b
50 : : #define CRYPTO_ALG_TYPE_RNG 0x0000000c
51 : : #define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
52 : : #define CRYPTO_ALG_TYPE_HASH 0x0000000e
53 : : #define CRYPTO_ALG_TYPE_SHASH 0x0000000e
54 : : #define CRYPTO_ALG_TYPE_AHASH 0x0000000f
55 : :
56 : : #define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
57 : : #define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e
58 : : #define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c
59 : : #define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e
60 : :
61 : : #define CRYPTO_ALG_LARVAL 0x00000010
62 : : #define CRYPTO_ALG_DEAD 0x00000020
63 : : #define CRYPTO_ALG_DYING 0x00000040
64 : : #define CRYPTO_ALG_ASYNC 0x00000080
65 : :
66 : : /*
67 : : * Set this bit if and only if the algorithm requires another algorithm of
68 : : * the same type to handle corner cases.
69 : : */
70 : : #define CRYPTO_ALG_NEED_FALLBACK 0x00000100
71 : :
72 : : /*
73 : : * Set if the algorithm has passed automated run-time testing. Note that
74 : : * if there is no run-time testing for a given algorithm it is considered
75 : : * to have passed.
76 : : */
77 : :
78 : : #define CRYPTO_ALG_TESTED 0x00000400
79 : :
80 : : /*
81 : : * Set if the algorithm is an instance that is built from templates.
82 : : */
83 : : #define CRYPTO_ALG_INSTANCE 0x00000800
84 : :
85 : : /* Set this bit if the algorithm provided is hardware accelerated but
86 : : * not available to userspace via instruction set or so.
87 : : */
88 : : #define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
89 : :
90 : : /*
91 : : * Mark a cipher as a service implementation only usable by another
92 : : * cipher and never by a normal user of the kernel crypto API
93 : : */
94 : : #define CRYPTO_ALG_INTERNAL 0x00002000
95 : :
96 : : /*
97 : : * Set if the algorithm has a ->setkey() method but can be used without
98 : : * calling it first, i.e. there is a default key.
99 : : */
100 : : #define CRYPTO_ALG_OPTIONAL_KEY 0x00004000
101 : :
102 : : /*
103 : : * Don't trigger module loading
104 : : */
105 : : #define CRYPTO_NOLOAD 0x00008000
106 : :
107 : : /*
108 : : * Transform masks and values (for crt_flags).
109 : : */
110 : : #define CRYPTO_TFM_NEED_KEY 0x00000001
111 : :
112 : : #define CRYPTO_TFM_REQ_MASK 0x000fff00
113 : : #define CRYPTO_TFM_RES_MASK 0xfff00000
114 : :
115 : : #define CRYPTO_TFM_REQ_FORBID_WEAK_KEYS 0x00000100
116 : : #define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
117 : : #define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
118 : : #define CRYPTO_TFM_RES_WEAK_KEY 0x00100000
119 : : #define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000
120 : : #define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000
121 : : #define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000
122 : : #define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000
123 : :
124 : : /*
125 : : * Miscellaneous stuff.
126 : : */
127 : : #define CRYPTO_MAX_ALG_NAME 128
128 : :
129 : : /*
130 : : * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
131 : : * declaration) is used to ensure that the crypto_tfm context structure is
132 : : * aligned correctly for the given architecture so that there are no alignment
133 : : * faults for C data types. In particular, this is required on platforms such
134 : : * as arm where pointers are 32-bit aligned but there are data types such as
135 : : * u64 which require 64-bit alignment.
136 : : */
137 : : #define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
138 : :
139 : : #define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
140 : :
141 : : struct scatterlist;
142 : : struct crypto_ablkcipher;
143 : : struct crypto_async_request;
144 : : struct crypto_blkcipher;
145 : : struct crypto_tfm;
146 : : struct crypto_type;
147 : :
148 : : typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
149 : :
150 : : /**
151 : : * DOC: Block Cipher Context Data Structures
152 : : *
153 : : * These data structures define the operating context for each block cipher
154 : : * type.
155 : : */
156 : :
157 : : struct crypto_async_request {
158 : : struct list_head list;
159 : : crypto_completion_t complete;
160 : : void *data;
161 : : struct crypto_tfm *tfm;
162 : :
163 : : u32 flags;
164 : : };
165 : :
166 : : struct ablkcipher_request {
167 : : struct crypto_async_request base;
168 : :
169 : : unsigned int nbytes;
170 : :
171 : : void *info;
172 : :
173 : : struct scatterlist *src;
174 : : struct scatterlist *dst;
175 : :
176 : : void *__ctx[] CRYPTO_MINALIGN_ATTR;
177 : : };
178 : :
179 : : struct blkcipher_desc {
180 : : struct crypto_blkcipher *tfm;
181 : : void *info;
182 : : u32 flags;
183 : : };
184 : :
185 : : /**
186 : : * DOC: Block Cipher Algorithm Definitions
187 : : *
188 : : * These data structures define modular crypto algorithm implementations,
189 : : * managed via crypto_register_alg() and crypto_unregister_alg().
190 : : */
191 : :
192 : : /**
193 : : * struct ablkcipher_alg - asynchronous block cipher definition
194 : : * @min_keysize: Minimum key size supported by the transformation. This is the
195 : : * smallest key length supported by this transformation algorithm.
196 : : * This must be set to one of the pre-defined values as this is
197 : : * not hardware specific. Possible values for this field can be
198 : : * found via git grep "_MIN_KEY_SIZE" include/crypto/
199 : : * @max_keysize: Maximum key size supported by the transformation. This is the
200 : : * largest key length supported by this transformation algorithm.
201 : : * This must be set to one of the pre-defined values as this is
202 : : * not hardware specific. Possible values for this field can be
203 : : * found via git grep "_MAX_KEY_SIZE" include/crypto/
204 : : * @setkey: Set key for the transformation. This function is used to either
205 : : * program a supplied key into the hardware or store the key in the
206 : : * transformation context for programming it later. Note that this
207 : : * function does modify the transformation context. This function can
208 : : * be called multiple times during the existence of the transformation
209 : : * object, so one must make sure the key is properly reprogrammed into
210 : : * the hardware. This function is also responsible for checking the key
211 : : * length for validity. In case a software fallback was put in place in
212 : : * the @cra_init call, this function might need to use the fallback if
213 : : * the algorithm doesn't support all of the key sizes.
214 : : * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
215 : : * the supplied scatterlist containing the blocks of data. The crypto
216 : : * API consumer is responsible for aligning the entries of the
217 : : * scatterlist properly and making sure the chunks are correctly
218 : : * sized. In case a software fallback was put in place in the
219 : : * @cra_init call, this function might need to use the fallback if
220 : : * the algorithm doesn't support all of the key sizes. In case the
221 : : * key was stored in transformation context, the key might need to be
222 : : * re-programmed into the hardware in this function. This function
223 : : * shall not modify the transformation context, as this function may
224 : : * be called in parallel with the same transformation object.
225 : : * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
226 : : * and the conditions are exactly the same.
227 : : * @ivsize: IV size applicable for transformation. The consumer must provide an
228 : : * IV of exactly that size to perform the encrypt or decrypt operation.
229 : : *
230 : : * All fields except @ivsize are mandatory and must be filled.
231 : : */
232 : : struct ablkcipher_alg {
233 : : int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
234 : : unsigned int keylen);
235 : : int (*encrypt)(struct ablkcipher_request *req);
236 : : int (*decrypt)(struct ablkcipher_request *req);
237 : :
238 : : unsigned int min_keysize;
239 : : unsigned int max_keysize;
240 : : unsigned int ivsize;
241 : : };
242 : :
243 : : /**
244 : : * struct blkcipher_alg - synchronous block cipher definition
245 : : * @min_keysize: see struct ablkcipher_alg
246 : : * @max_keysize: see struct ablkcipher_alg
247 : : * @setkey: see struct ablkcipher_alg
248 : : * @encrypt: see struct ablkcipher_alg
249 : : * @decrypt: see struct ablkcipher_alg
250 : : * @ivsize: see struct ablkcipher_alg
251 : : *
252 : : * All fields except @ivsize are mandatory and must be filled.
253 : : */
254 : : struct blkcipher_alg {
255 : : int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
256 : : unsigned int keylen);
257 : : int (*encrypt)(struct blkcipher_desc *desc,
258 : : struct scatterlist *dst, struct scatterlist *src,
259 : : unsigned int nbytes);
260 : : int (*decrypt)(struct blkcipher_desc *desc,
261 : : struct scatterlist *dst, struct scatterlist *src,
262 : : unsigned int nbytes);
263 : :
264 : : unsigned int min_keysize;
265 : : unsigned int max_keysize;
266 : : unsigned int ivsize;
267 : : };
268 : :
269 : : /**
270 : : * struct cipher_alg - single-block symmetric ciphers definition
271 : : * @cia_min_keysize: Minimum key size supported by the transformation. This is
272 : : * the smallest key length supported by this transformation
273 : : * algorithm. This must be set to one of the pre-defined
274 : : * values as this is not hardware specific. Possible values
275 : : * for this field can be found via git grep "_MIN_KEY_SIZE"
276 : : * include/crypto/
277 : : * @cia_max_keysize: Maximum key size supported by the transformation. This is
278 : : * the largest key length supported by this transformation
279 : : * algorithm. This must be set to one of the pre-defined values
280 : : * as this is not hardware specific. Possible values for this
281 : : * field can be found via git grep "_MAX_KEY_SIZE"
282 : : * include/crypto/
283 : : * @cia_setkey: Set key for the transformation. This function is used to either
284 : : * program a supplied key into the hardware or store the key in the
285 : : * transformation context for programming it later. Note that this
286 : : * function does modify the transformation context. This function
287 : : * can be called multiple times during the existence of the
288 : : * transformation object, so one must make sure the key is properly
289 : : * reprogrammed into the hardware. This function is also
290 : : * responsible for checking the key length for validity.
291 : : * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
292 : : * single block of data, which must be @cra_blocksize big. This
293 : : * always operates on a full @cra_blocksize and it is not possible
294 : : * to encrypt a block of smaller size. The supplied buffers must
295 : : * therefore also be at least of @cra_blocksize size. Both the
296 : : * input and output buffers are always aligned to @cra_alignmask.
297 : : * In case either of the input or output buffer supplied by user
298 : : * of the crypto API is not aligned to @cra_alignmask, the crypto
299 : : * API will re-align the buffers. The re-alignment means that a
300 : : * new buffer will be allocated, the data will be copied into the
301 : : * new buffer, then the processing will happen on the new buffer,
302 : : * then the data will be copied back into the original buffer and
303 : : * finally the new buffer will be freed. In case a software
304 : : * fallback was put in place in the @cra_init call, this function
305 : : * might need to use the fallback if the algorithm doesn't support
306 : : * all of the key sizes. In case the key was stored in
307 : : * transformation context, the key might need to be re-programmed
308 : : * into the hardware in this function. This function shall not
309 : : * modify the transformation context, as this function may be
310 : : * called in parallel with the same transformation object.
311 : : * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
312 : : * @cia_encrypt, and the conditions are exactly the same.
313 : : *
314 : : * All fields are mandatory and must be filled.
315 : : */
316 : : struct cipher_alg {
317 : : unsigned int cia_min_keysize;
318 : : unsigned int cia_max_keysize;
319 : : int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
320 : : unsigned int keylen);
321 : : void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
322 : : void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
323 : : };
324 : :
325 : : /**
326 : : * struct compress_alg - compression/decompression algorithm
327 : : * @coa_compress: Compress a buffer of specified length, storing the resulting
328 : : * data in the specified buffer. Return the length of the
329 : : * compressed data in dlen.
330 : : * @coa_decompress: Decompress the source buffer, storing the uncompressed
331 : : * data in the specified buffer. The length of the data is
332 : : * returned in dlen.
333 : : *
334 : : * All fields are mandatory.
335 : : */
336 : : struct compress_alg {
337 : : int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
338 : : unsigned int slen, u8 *dst, unsigned int *dlen);
339 : : int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
340 : : unsigned int slen, u8 *dst, unsigned int *dlen);
341 : : };
342 : :
343 : : #ifdef CONFIG_CRYPTO_STATS
344 : : /*
345 : : * struct crypto_istat_aead - statistics for AEAD algorithm
346 : : * @encrypt_cnt: number of encrypt requests
347 : : * @encrypt_tlen: total data size handled by encrypt requests
348 : : * @decrypt_cnt: number of decrypt requests
349 : : * @decrypt_tlen: total data size handled by decrypt requests
350 : : * @err_cnt: number of error for AEAD requests
351 : : */
352 : : struct crypto_istat_aead {
353 : : atomic64_t encrypt_cnt;
354 : : atomic64_t encrypt_tlen;
355 : : atomic64_t decrypt_cnt;
356 : : atomic64_t decrypt_tlen;
357 : : atomic64_t err_cnt;
358 : : };
359 : :
360 : : /*
361 : : * struct crypto_istat_akcipher - statistics for akcipher algorithm
362 : : * @encrypt_cnt: number of encrypt requests
363 : : * @encrypt_tlen: total data size handled by encrypt requests
364 : : * @decrypt_cnt: number of decrypt requests
365 : : * @decrypt_tlen: total data size handled by decrypt requests
366 : : * @verify_cnt: number of verify operation
367 : : * @sign_cnt: number of sign requests
368 : : * @err_cnt: number of error for akcipher requests
369 : : */
370 : : struct crypto_istat_akcipher {
371 : : atomic64_t encrypt_cnt;
372 : : atomic64_t encrypt_tlen;
373 : : atomic64_t decrypt_cnt;
374 : : atomic64_t decrypt_tlen;
375 : : atomic64_t verify_cnt;
376 : : atomic64_t sign_cnt;
377 : : atomic64_t err_cnt;
378 : : };
379 : :
380 : : /*
381 : : * struct crypto_istat_cipher - statistics for cipher algorithm
382 : : * @encrypt_cnt: number of encrypt requests
383 : : * @encrypt_tlen: total data size handled by encrypt requests
384 : : * @decrypt_cnt: number of decrypt requests
385 : : * @decrypt_tlen: total data size handled by decrypt requests
386 : : * @err_cnt: number of error for cipher requests
387 : : */
388 : : struct crypto_istat_cipher {
389 : : atomic64_t encrypt_cnt;
390 : : atomic64_t encrypt_tlen;
391 : : atomic64_t decrypt_cnt;
392 : : atomic64_t decrypt_tlen;
393 : : atomic64_t err_cnt;
394 : : };
395 : :
396 : : /*
397 : : * struct crypto_istat_compress - statistics for compress algorithm
398 : : * @compress_cnt: number of compress requests
399 : : * @compress_tlen: total data size handled by compress requests
400 : : * @decompress_cnt: number of decompress requests
401 : : * @decompress_tlen: total data size handled by decompress requests
402 : : * @err_cnt: number of error for compress requests
403 : : */
404 : : struct crypto_istat_compress {
405 : : atomic64_t compress_cnt;
406 : : atomic64_t compress_tlen;
407 : : atomic64_t decompress_cnt;
408 : : atomic64_t decompress_tlen;
409 : : atomic64_t err_cnt;
410 : : };
411 : :
412 : : /*
413 : : * struct crypto_istat_hash - statistics for has algorithm
414 : : * @hash_cnt: number of hash requests
415 : : * @hash_tlen: total data size hashed
416 : : * @err_cnt: number of error for hash requests
417 : : */
418 : : struct crypto_istat_hash {
419 : : atomic64_t hash_cnt;
420 : : atomic64_t hash_tlen;
421 : : atomic64_t err_cnt;
422 : : };
423 : :
424 : : /*
425 : : * struct crypto_istat_kpp - statistics for KPP algorithm
426 : : * @setsecret_cnt: number of setsecrey operation
427 : : * @generate_public_key_cnt: number of generate_public_key operation
428 : : * @compute_shared_secret_cnt: number of compute_shared_secret operation
429 : : * @err_cnt: number of error for KPP requests
430 : : */
431 : : struct crypto_istat_kpp {
432 : : atomic64_t setsecret_cnt;
433 : : atomic64_t generate_public_key_cnt;
434 : : atomic64_t compute_shared_secret_cnt;
435 : : atomic64_t err_cnt;
436 : : };
437 : :
438 : : /*
439 : : * struct crypto_istat_rng: statistics for RNG algorithm
440 : : * @generate_cnt: number of RNG generate requests
441 : : * @generate_tlen: total data size of generated data by the RNG
442 : : * @seed_cnt: number of times the RNG was seeded
443 : : * @err_cnt: number of error for RNG requests
444 : : */
445 : : struct crypto_istat_rng {
446 : : atomic64_t generate_cnt;
447 : : atomic64_t generate_tlen;
448 : : atomic64_t seed_cnt;
449 : : atomic64_t err_cnt;
450 : : };
451 : : #endif /* CONFIG_CRYPTO_STATS */
452 : :
453 : : #define cra_ablkcipher cra_u.ablkcipher
454 : : #define cra_blkcipher cra_u.blkcipher
455 : : #define cra_cipher cra_u.cipher
456 : : #define cra_compress cra_u.compress
457 : :
458 : : /**
459 : : * struct crypto_alg - definition of a cryptograpic cipher algorithm
460 : : * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
461 : : * CRYPTO_ALG_* flags for the flags which go in here. Those are
462 : : * used for fine-tuning the description of the transformation
463 : : * algorithm.
464 : : * @cra_blocksize: Minimum block size of this transformation. The size in bytes
465 : : * of the smallest possible unit which can be transformed with
466 : : * this algorithm. The users must respect this value.
467 : : * In case of HASH transformation, it is possible for a smaller
468 : : * block than @cra_blocksize to be passed to the crypto API for
469 : : * transformation, in case of any other transformation type, an
470 : : * error will be returned upon any attempt to transform smaller
471 : : * than @cra_blocksize chunks.
472 : : * @cra_ctxsize: Size of the operational context of the transformation. This
473 : : * value informs the kernel crypto API about the memory size
474 : : * needed to be allocated for the transformation context.
475 : : * @cra_alignmask: Alignment mask for the input and output data buffer. The data
476 : : * buffer containing the input data for the algorithm must be
477 : : * aligned to this alignment mask. The data buffer for the
478 : : * output data must be aligned to this alignment mask. Note that
479 : : * the Crypto API will do the re-alignment in software, but
480 : : * only under special conditions and there is a performance hit.
481 : : * The re-alignment happens at these occasions for different
482 : : * @cra_u types: cipher -- For both input data and output data
483 : : * buffer; ahash -- For output hash destination buf; shash --
484 : : * For output hash destination buf.
485 : : * This is needed on hardware which is flawed by design and
486 : : * cannot pick data from arbitrary addresses.
487 : : * @cra_priority: Priority of this transformation implementation. In case
488 : : * multiple transformations with same @cra_name are available to
489 : : * the Crypto API, the kernel will use the one with highest
490 : : * @cra_priority.
491 : : * @cra_name: Generic name (usable by multiple implementations) of the
492 : : * transformation algorithm. This is the name of the transformation
493 : : * itself. This field is used by the kernel when looking up the
494 : : * providers of particular transformation.
495 : : * @cra_driver_name: Unique name of the transformation provider. This is the
496 : : * name of the provider of the transformation. This can be any
497 : : * arbitrary value, but in the usual case, this contains the
498 : : * name of the chip or provider and the name of the
499 : : * transformation algorithm.
500 : : * @cra_type: Type of the cryptographic transformation. This is a pointer to
501 : : * struct crypto_type, which implements callbacks common for all
502 : : * transformation types. There are multiple options:
503 : : * &crypto_blkcipher_type, &crypto_ablkcipher_type,
504 : : * &crypto_ahash_type, &crypto_rng_type.
505 : : * This field might be empty. In that case, there are no common
506 : : * callbacks. This is the case for: cipher, compress, shash.
507 : : * @cra_u: Callbacks implementing the transformation. This is a union of
508 : : * multiple structures. Depending on the type of transformation selected
509 : : * by @cra_type and @cra_flags above, the associated structure must be
510 : : * filled with callbacks. This field might be empty. This is the case
511 : : * for ahash, shash.
512 : : * @cra_init: Initialize the cryptographic transformation object. This function
513 : : * is used to initialize the cryptographic transformation object.
514 : : * This function is called only once at the instantiation time, right
515 : : * after the transformation context was allocated. In case the
516 : : * cryptographic hardware has some special requirements which need to
517 : : * be handled by software, this function shall check for the precise
518 : : * requirement of the transformation and put any software fallbacks
519 : : * in place.
520 : : * @cra_exit: Deinitialize the cryptographic transformation object. This is a
521 : : * counterpart to @cra_init, used to remove various changes set in
522 : : * @cra_init.
523 : : * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher
524 : : * definition. See @struct @ablkcipher_alg.
525 : : * @cra_u.blkcipher: Union member which contains a synchronous block cipher
526 : : * definition See @struct @blkcipher_alg.
527 : : * @cra_u.cipher: Union member which contains a single-block symmetric cipher
528 : : * definition. See @struct @cipher_alg.
529 : : * @cra_u.compress: Union member which contains a (de)compression algorithm.
530 : : * See @struct @compress_alg.
531 : : * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
532 : : * @cra_list: internally used
533 : : * @cra_users: internally used
534 : : * @cra_refcnt: internally used
535 : : * @cra_destroy: internally used
536 : : *
537 : : * @stats: union of all possible crypto_istat_xxx structures
538 : : * @stats.aead: statistics for AEAD algorithm
539 : : * @stats.akcipher: statistics for akcipher algorithm
540 : : * @stats.cipher: statistics for cipher algorithm
541 : : * @stats.compress: statistics for compress algorithm
542 : : * @stats.hash: statistics for hash algorithm
543 : : * @stats.rng: statistics for rng algorithm
544 : : * @stats.kpp: statistics for KPP algorithm
545 : : *
546 : : * The struct crypto_alg describes a generic Crypto API algorithm and is common
547 : : * for all of the transformations. Any variable not documented here shall not
548 : : * be used by a cipher implementation as it is internal to the Crypto API.
549 : : */
550 : : struct crypto_alg {
551 : : struct list_head cra_list;
552 : : struct list_head cra_users;
553 : :
554 : : u32 cra_flags;
555 : : unsigned int cra_blocksize;
556 : : unsigned int cra_ctxsize;
557 : : unsigned int cra_alignmask;
558 : :
559 : : int cra_priority;
560 : : refcount_t cra_refcnt;
561 : :
562 : : char cra_name[CRYPTO_MAX_ALG_NAME];
563 : : char cra_driver_name[CRYPTO_MAX_ALG_NAME];
564 : :
565 : : const struct crypto_type *cra_type;
566 : :
567 : : union {
568 : : struct ablkcipher_alg ablkcipher;
569 : : struct blkcipher_alg blkcipher;
570 : : struct cipher_alg cipher;
571 : : struct compress_alg compress;
572 : : } cra_u;
573 : :
574 : : int (*cra_init)(struct crypto_tfm *tfm);
575 : : void (*cra_exit)(struct crypto_tfm *tfm);
576 : : void (*cra_destroy)(struct crypto_alg *alg);
577 : :
578 : : struct module *cra_module;
579 : :
580 : : #ifdef CONFIG_CRYPTO_STATS
581 : : union {
582 : : struct crypto_istat_aead aead;
583 : : struct crypto_istat_akcipher akcipher;
584 : : struct crypto_istat_cipher cipher;
585 : : struct crypto_istat_compress compress;
586 : : struct crypto_istat_hash hash;
587 : : struct crypto_istat_rng rng;
588 : : struct crypto_istat_kpp kpp;
589 : : } stats;
590 : : #endif /* CONFIG_CRYPTO_STATS */
591 : :
592 : : } CRYPTO_MINALIGN_ATTR;
593 : :
594 : : #ifdef CONFIG_CRYPTO_STATS
595 : : void crypto_stats_init(struct crypto_alg *alg);
596 : : void crypto_stats_get(struct crypto_alg *alg);
597 : : void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg);
598 : : void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg);
599 : : void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
600 : : void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
601 : : void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
602 : : void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
603 : : void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
604 : : void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
605 : : void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
606 : : void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
607 : : void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
608 : : void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
609 : : void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
610 : : void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
611 : : void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
612 : : void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
613 : : void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
614 : : void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
615 : : void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
616 : : #else
617 : : static inline void crypto_stats_init(struct crypto_alg *alg)
618 : : {}
619 : : static inline void crypto_stats_get(struct crypto_alg *alg)
620 : : {}
621 : : static inline void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg)
622 : : {}
623 : : static inline void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg)
624 : : {}
625 : : static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
626 : : {}
627 : : static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
628 : : {}
629 : : static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
630 : : {}
631 : : static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
632 : : {}
633 : : static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
634 : : {}
635 : : static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
636 : : {}
637 : : static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
638 : : {}
639 : : static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
640 : : {}
641 : : static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
642 : : {}
643 : : static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
644 : : {}
645 : : static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
646 : : {}
647 : : static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
648 : : {}
649 : : static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
650 : : {}
651 : : static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
652 : : {}
653 : : static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
654 : : {}
655 : : static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
656 : : {}
657 : : static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
658 : : {}
659 : : #endif
660 : : /*
661 : : * A helper struct for waiting for completion of async crypto ops
662 : : */
663 : : struct crypto_wait {
664 : : struct completion completion;
665 : : int err;
666 : : };
667 : :
668 : : /*
669 : : * Macro for declaring a crypto op async wait object on stack
670 : : */
671 : : #define DECLARE_CRYPTO_WAIT(_wait) \
672 : : struct crypto_wait _wait = { \
673 : : COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
674 : :
675 : : /*
676 : : * Async ops completion helper functioons
677 : : */
678 : : void crypto_req_done(struct crypto_async_request *req, int err);
679 : :
680 : : static inline int crypto_wait_req(int err, struct crypto_wait *wait)
681 : : {
682 [ - + # # ]: 1616 : switch (err) {
683 : : case -EINPROGRESS:
684 : : case -EBUSY:
685 : 0 : wait_for_completion(&wait->completion);
686 : : reinit_completion(&wait->completion);
687 : 0 : err = wait->err;
688 : : break;
689 : : };
690 : :
691 : : return err;
692 : : }
693 : :
694 : : static inline void crypto_init_wait(struct crypto_wait *wait)
695 : : {
696 : : init_completion(&wait->completion);
697 : : }
698 : :
699 : : /*
700 : : * Algorithm registration interface.
701 : : */
702 : : int crypto_register_alg(struct crypto_alg *alg);
703 : : int crypto_unregister_alg(struct crypto_alg *alg);
704 : : int crypto_register_algs(struct crypto_alg *algs, int count);
705 : : int crypto_unregister_algs(struct crypto_alg *algs, int count);
706 : :
707 : : /*
708 : : * Algorithm query interface.
709 : : */
710 : : int crypto_has_alg(const char *name, u32 type, u32 mask);
711 : :
712 : : /*
713 : : * Transforms: user-instantiated objects which encapsulate algorithms
714 : : * and core processing logic. Managed via crypto_alloc_*() and
715 : : * crypto_free_*(), as well as the various helpers below.
716 : : */
717 : :
718 : : struct ablkcipher_tfm {
719 : : int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
720 : : unsigned int keylen);
721 : : int (*encrypt)(struct ablkcipher_request *req);
722 : : int (*decrypt)(struct ablkcipher_request *req);
723 : :
724 : : struct crypto_ablkcipher *base;
725 : :
726 : : unsigned int ivsize;
727 : : unsigned int reqsize;
728 : : };
729 : :
730 : : struct blkcipher_tfm {
731 : : void *iv;
732 : : int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
733 : : unsigned int keylen);
734 : : int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
735 : : struct scatterlist *src, unsigned int nbytes);
736 : : int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
737 : : struct scatterlist *src, unsigned int nbytes);
738 : : };
739 : :
740 : : struct cipher_tfm {
741 : : int (*cit_setkey)(struct crypto_tfm *tfm,
742 : : const u8 *key, unsigned int keylen);
743 : : void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
744 : : void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
745 : : };
746 : :
747 : : struct compress_tfm {
748 : : int (*cot_compress)(struct crypto_tfm *tfm,
749 : : const u8 *src, unsigned int slen,
750 : : u8 *dst, unsigned int *dlen);
751 : : int (*cot_decompress)(struct crypto_tfm *tfm,
752 : : const u8 *src, unsigned int slen,
753 : : u8 *dst, unsigned int *dlen);
754 : : };
755 : :
756 : : #define crt_ablkcipher crt_u.ablkcipher
757 : : #define crt_blkcipher crt_u.blkcipher
758 : : #define crt_cipher crt_u.cipher
759 : : #define crt_compress crt_u.compress
760 : :
761 : : struct crypto_tfm {
762 : :
763 : : u32 crt_flags;
764 : :
765 : : union {
766 : : struct ablkcipher_tfm ablkcipher;
767 : : struct blkcipher_tfm blkcipher;
768 : : struct cipher_tfm cipher;
769 : : struct compress_tfm compress;
770 : : } crt_u;
771 : :
772 : : void (*exit)(struct crypto_tfm *tfm);
773 : :
774 : : struct crypto_alg *__crt_alg;
775 : :
776 : : void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
777 : : };
778 : :
779 : : struct crypto_ablkcipher {
780 : : struct crypto_tfm base;
781 : : };
782 : :
783 : : struct crypto_blkcipher {
784 : : struct crypto_tfm base;
785 : : };
786 : :
787 : : struct crypto_cipher {
788 : : struct crypto_tfm base;
789 : : };
790 : :
791 : : struct crypto_comp {
792 : : struct crypto_tfm base;
793 : : };
794 : :
795 : : enum {
796 : : CRYPTOA_UNSPEC,
797 : : CRYPTOA_ALG,
798 : : CRYPTOA_TYPE,
799 : : CRYPTOA_U32,
800 : : __CRYPTOA_MAX,
801 : : };
802 : :
803 : : #define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
804 : :
805 : : /* Maximum number of (rtattr) parameters for each template. */
806 : : #define CRYPTO_MAX_ATTRS 32
807 : :
808 : : struct crypto_attr_alg {
809 : : char name[CRYPTO_MAX_ALG_NAME];
810 : : };
811 : :
812 : : struct crypto_attr_type {
813 : : u32 type;
814 : : u32 mask;
815 : : };
816 : :
817 : : struct crypto_attr_u32 {
818 : : u32 num;
819 : : };
820 : :
821 : : /*
822 : : * Transform user interface.
823 : : */
824 : :
825 : : struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
826 : : void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
827 : :
828 : : static inline void crypto_free_tfm(struct crypto_tfm *tfm)
829 : : {
830 : 0 : return crypto_destroy_tfm(tfm, tfm);
831 : : }
832 : :
833 : : int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
834 : :
835 : : /*
836 : : * Transform helpers which query the underlying algorithm.
837 : : */
838 : : static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
839 : : {
840 : : return tfm->__crt_alg->cra_name;
841 : : }
842 : :
843 : : static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
844 : : {
845 : 0 : return tfm->__crt_alg->cra_driver_name;
846 : : }
847 : :
848 : : static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
849 : : {
850 : : return tfm->__crt_alg->cra_priority;
851 : : }
852 : :
853 : : static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
854 : : {
855 : 0 : return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
856 : : }
857 : :
858 : : static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
859 : : {
860 : 0 : return tfm->__crt_alg->cra_blocksize;
861 : : }
862 : :
863 : : static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
864 : : {
865 : 3232 : return tfm->__crt_alg->cra_alignmask;
866 : : }
867 : :
868 : : static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
869 : : {
870 : 2828 : return tfm->crt_flags;
871 : : }
872 : :
873 : : static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
874 : : {
875 : 0 : tfm->crt_flags |= flags;
876 : : }
877 : :
878 : : static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
879 : : {
880 : 0 : tfm->crt_flags &= ~flags;
881 : : }
882 : :
883 : : static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
884 : : {
885 : 0 : return tfm->__crt_ctx;
886 : : }
887 : :
888 : : static inline unsigned int crypto_tfm_ctx_alignment(void)
889 : : {
890 : : struct crypto_tfm *tfm;
891 : : return __alignof__(tfm->__crt_ctx);
892 : : }
893 : :
894 : : /*
895 : : * API wrappers.
896 : : */
897 : : static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
898 : : struct crypto_tfm *tfm)
899 : : {
900 : : return (struct crypto_ablkcipher *)tfm;
901 : : }
902 : :
903 : : static inline u32 crypto_skcipher_type(u32 type)
904 : : {
905 : : type &= ~CRYPTO_ALG_TYPE_MASK;
906 : : type |= CRYPTO_ALG_TYPE_BLKCIPHER;
907 : : return type;
908 : : }
909 : :
910 : : static inline u32 crypto_skcipher_mask(u32 mask)
911 : : {
912 : : mask &= ~CRYPTO_ALG_TYPE_MASK;
913 : : mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
914 : : return mask;
915 : : }
916 : :
917 : : /**
918 : : * DOC: Asynchronous Block Cipher API
919 : : *
920 : : * Asynchronous block cipher API is used with the ciphers of type
921 : : * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
922 : : *
923 : : * Asynchronous cipher operations imply that the function invocation for a
924 : : * cipher request returns immediately before the completion of the operation.
925 : : * The cipher request is scheduled as a separate kernel thread and therefore
926 : : * load-balanced on the different CPUs via the process scheduler. To allow
927 : : * the kernel crypto API to inform the caller about the completion of a cipher
928 : : * request, the caller must provide a callback function. That function is
929 : : * invoked with the cipher handle when the request completes.
930 : : *
931 : : * To support the asynchronous operation, additional information than just the
932 : : * cipher handle must be supplied to the kernel crypto API. That additional
933 : : * information is given by filling in the ablkcipher_request data structure.
934 : : *
935 : : * For the asynchronous block cipher API, the state is maintained with the tfm
936 : : * cipher handle. A single tfm can be used across multiple calls and in
937 : : * parallel. For asynchronous block cipher calls, context data supplied and
938 : : * only used by the caller can be referenced the request data structure in
939 : : * addition to the IV used for the cipher request. The maintenance of such
940 : : * state information would be important for a crypto driver implementer to
941 : : * have, because when calling the callback function upon completion of the
942 : : * cipher operation, that callback function may need some information about
943 : : * which operation just finished if it invoked multiple in parallel. This
944 : : * state information is unused by the kernel crypto API.
945 : : */
946 : :
947 : : static inline struct crypto_tfm *crypto_ablkcipher_tfm(
948 : : struct crypto_ablkcipher *tfm)
949 : : {
950 : 0 : return &tfm->base;
951 : : }
952 : :
953 : : /**
954 : : * crypto_free_ablkcipher() - zeroize and free cipher handle
955 : : * @tfm: cipher handle to be freed
956 : : */
957 : : static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
958 : : {
959 : : crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
960 : : }
961 : :
962 : : /**
963 : : * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
964 : : * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
965 : : * ablkcipher
966 : : * @type: specifies the type of the cipher
967 : : * @mask: specifies the mask for the cipher
968 : : *
969 : : * Return: true when the ablkcipher is known to the kernel crypto API; false
970 : : * otherwise
971 : : */
972 : : static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
973 : : u32 mask)
974 : : {
975 : : return crypto_has_alg(alg_name, crypto_skcipher_type(type),
976 : : crypto_skcipher_mask(mask));
977 : : }
978 : :
979 : : static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
980 : : struct crypto_ablkcipher *tfm)
981 : : {
982 : : return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
983 : : }
984 : :
985 : : /**
986 : : * crypto_ablkcipher_ivsize() - obtain IV size
987 : : * @tfm: cipher handle
988 : : *
989 : : * The size of the IV for the ablkcipher referenced by the cipher handle is
990 : : * returned. This IV size may be zero if the cipher does not need an IV.
991 : : *
992 : : * Return: IV size in bytes
993 : : */
994 : : static inline unsigned int crypto_ablkcipher_ivsize(
995 : : struct crypto_ablkcipher *tfm)
996 : : {
997 : 0 : return crypto_ablkcipher_crt(tfm)->ivsize;
998 : : }
999 : :
1000 : : /**
1001 : : * crypto_ablkcipher_blocksize() - obtain block size of cipher
1002 : : * @tfm: cipher handle
1003 : : *
1004 : : * The block size for the ablkcipher referenced with the cipher handle is
1005 : : * returned. The caller may use that information to allocate appropriate
1006 : : * memory for the data returned by the encryption or decryption operation
1007 : : *
1008 : : * Return: block size of cipher
1009 : : */
1010 : : static inline unsigned int crypto_ablkcipher_blocksize(
1011 : : struct crypto_ablkcipher *tfm)
1012 : : {
1013 : : return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
1014 : : }
1015 : :
1016 : : static inline unsigned int crypto_ablkcipher_alignmask(
1017 : : struct crypto_ablkcipher *tfm)
1018 : : {
1019 : : return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
1020 : : }
1021 : :
1022 : : static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
1023 : : {
1024 : : return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
1025 : : }
1026 : :
1027 : : static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
1028 : : u32 flags)
1029 : : {
1030 : : crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
1031 : : }
1032 : :
1033 : : static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
1034 : : u32 flags)
1035 : : {
1036 : : crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
1037 : : }
1038 : :
1039 : : /**
1040 : : * crypto_ablkcipher_setkey() - set key for cipher
1041 : : * @tfm: cipher handle
1042 : : * @key: buffer holding the key
1043 : : * @keylen: length of the key in bytes
1044 : : *
1045 : : * The caller provided key is set for the ablkcipher referenced by the cipher
1046 : : * handle.
1047 : : *
1048 : : * Note, the key length determines the cipher type. Many block ciphers implement
1049 : : * different cipher modes depending on the key size, such as AES-128 vs AES-192
1050 : : * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1051 : : * is performed.
1052 : : *
1053 : : * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1054 : : */
1055 : : static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
1056 : : const u8 *key, unsigned int keylen)
1057 : : {
1058 : : struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
1059 : :
1060 : 0 : return crt->setkey(crt->base, key, keylen);
1061 : : }
1062 : :
1063 : : /**
1064 : : * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
1065 : : * @req: ablkcipher_request out of which the cipher handle is to be obtained
1066 : : *
1067 : : * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
1068 : : * data structure.
1069 : : *
1070 : : * Return: crypto_ablkcipher handle
1071 : : */
1072 : : static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
1073 : : struct ablkcipher_request *req)
1074 : : {
1075 : : return __crypto_ablkcipher_cast(req->base.tfm);
1076 : : }
1077 : :
1078 : : /**
1079 : : * crypto_ablkcipher_encrypt() - encrypt plaintext
1080 : : * @req: reference to the ablkcipher_request handle that holds all information
1081 : : * needed to perform the cipher operation
1082 : : *
1083 : : * Encrypt plaintext data using the ablkcipher_request handle. That data
1084 : : * structure and how it is filled with data is discussed with the
1085 : : * ablkcipher_request_* functions.
1086 : : *
1087 : : * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1088 : : */
1089 : : static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
1090 : : {
1091 : : struct ablkcipher_tfm *crt =
1092 : : crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1093 : : struct crypto_alg *alg = crt->base->base.__crt_alg;
1094 : : unsigned int nbytes = req->nbytes;
1095 : : int ret;
1096 : :
1097 : : crypto_stats_get(alg);
1098 : : ret = crt->encrypt(req);
1099 : : crypto_stats_ablkcipher_encrypt(nbytes, ret, alg);
1100 : : return ret;
1101 : : }
1102 : :
1103 : : /**
1104 : : * crypto_ablkcipher_decrypt() - decrypt ciphertext
1105 : : * @req: reference to the ablkcipher_request handle that holds all information
1106 : : * needed to perform the cipher operation
1107 : : *
1108 : : * Decrypt ciphertext data using the ablkcipher_request handle. That data
1109 : : * structure and how it is filled with data is discussed with the
1110 : : * ablkcipher_request_* functions.
1111 : : *
1112 : : * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1113 : : */
1114 : : static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
1115 : : {
1116 : : struct ablkcipher_tfm *crt =
1117 : : crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
1118 : : struct crypto_alg *alg = crt->base->base.__crt_alg;
1119 : : unsigned int nbytes = req->nbytes;
1120 : : int ret;
1121 : :
1122 : : crypto_stats_get(alg);
1123 : : ret = crt->decrypt(req);
1124 : : crypto_stats_ablkcipher_decrypt(nbytes, ret, alg);
1125 : : return ret;
1126 : : }
1127 : :
1128 : : /**
1129 : : * DOC: Asynchronous Cipher Request Handle
1130 : : *
1131 : : * The ablkcipher_request data structure contains all pointers to data
1132 : : * required for the asynchronous cipher operation. This includes the cipher
1133 : : * handle (which can be used by multiple ablkcipher_request instances), pointer
1134 : : * to plaintext and ciphertext, asynchronous callback function, etc. It acts
1135 : : * as a handle to the ablkcipher_request_* API calls in a similar way as
1136 : : * ablkcipher handle to the crypto_ablkcipher_* API calls.
1137 : : */
1138 : :
1139 : : /**
1140 : : * crypto_ablkcipher_reqsize() - obtain size of the request data structure
1141 : : * @tfm: cipher handle
1142 : : *
1143 : : * Return: number of bytes
1144 : : */
1145 : : static inline unsigned int crypto_ablkcipher_reqsize(
1146 : : struct crypto_ablkcipher *tfm)
1147 : : {
1148 : 0 : return crypto_ablkcipher_crt(tfm)->reqsize;
1149 : : }
1150 : :
1151 : : /**
1152 : : * ablkcipher_request_set_tfm() - update cipher handle reference in request
1153 : : * @req: request handle to be modified
1154 : : * @tfm: cipher handle that shall be added to the request handle
1155 : : *
1156 : : * Allow the caller to replace the existing ablkcipher handle in the request
1157 : : * data structure with a different one.
1158 : : */
1159 : : static inline void ablkcipher_request_set_tfm(
1160 : : struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
1161 : : {
1162 : 0 : req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
1163 : : }
1164 : :
1165 : : static inline struct ablkcipher_request *ablkcipher_request_cast(
1166 : : struct crypto_async_request *req)
1167 : : {
1168 : : return container_of(req, struct ablkcipher_request, base);
1169 : : }
1170 : :
1171 : : /**
1172 : : * ablkcipher_request_alloc() - allocate request data structure
1173 : : * @tfm: cipher handle to be registered with the request
1174 : : * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1175 : : *
1176 : : * Allocate the request data structure that must be used with the ablkcipher
1177 : : * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1178 : : * handle is registered in the request data structure.
1179 : : *
1180 : : * Return: allocated request handle in case of success, or NULL if out of memory
1181 : : */
1182 : : static inline struct ablkcipher_request *ablkcipher_request_alloc(
1183 : : struct crypto_ablkcipher *tfm, gfp_t gfp)
1184 : : {
1185 : : struct ablkcipher_request *req;
1186 : :
1187 : : req = kmalloc(sizeof(struct ablkcipher_request) +
1188 : : crypto_ablkcipher_reqsize(tfm), gfp);
1189 : :
1190 : : if (likely(req))
1191 : : ablkcipher_request_set_tfm(req, tfm);
1192 : :
1193 : : return req;
1194 : : }
1195 : :
1196 : : /**
1197 : : * ablkcipher_request_free() - zeroize and free request data structure
1198 : : * @req: request data structure cipher handle to be freed
1199 : : */
1200 : : static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1201 : : {
1202 : : kzfree(req);
1203 : : }
1204 : :
1205 : : /**
1206 : : * ablkcipher_request_set_callback() - set asynchronous callback function
1207 : : * @req: request handle
1208 : : * @flags: specify zero or an ORing of the flags
1209 : : * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
1210 : : * increase the wait queue beyond the initial maximum size;
1211 : : * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1212 : : * @compl: callback function pointer to be registered with the request handle
1213 : : * @data: The data pointer refers to memory that is not used by the kernel
1214 : : * crypto API, but provided to the callback function for it to use. Here,
1215 : : * the caller can provide a reference to memory the callback function can
1216 : : * operate on. As the callback function is invoked asynchronously to the
1217 : : * related functionality, it may need to access data structures of the
1218 : : * related functionality which can be referenced using this pointer. The
1219 : : * callback function can access the memory via the "data" field in the
1220 : : * crypto_async_request data structure provided to the callback function.
1221 : : *
1222 : : * This function allows setting the callback function that is triggered once the
1223 : : * cipher operation completes.
1224 : : *
1225 : : * The callback function is registered with the ablkcipher_request handle and
1226 : : * must comply with the following template::
1227 : : *
1228 : : * void callback_function(struct crypto_async_request *req, int error)
1229 : : */
1230 : : static inline void ablkcipher_request_set_callback(
1231 : : struct ablkcipher_request *req,
1232 : : u32 flags, crypto_completion_t compl, void *data)
1233 : : {
1234 : 0 : req->base.complete = compl;
1235 : 0 : req->base.data = data;
1236 : 0 : req->base.flags = flags;
1237 : : }
1238 : :
1239 : : /**
1240 : : * ablkcipher_request_set_crypt() - set data buffers
1241 : : * @req: request handle
1242 : : * @src: source scatter / gather list
1243 : : * @dst: destination scatter / gather list
1244 : : * @nbytes: number of bytes to process from @src
1245 : : * @iv: IV for the cipher operation which must comply with the IV size defined
1246 : : * by crypto_ablkcipher_ivsize
1247 : : *
1248 : : * This function allows setting of the source data and destination data
1249 : : * scatter / gather lists.
1250 : : *
1251 : : * For encryption, the source is treated as the plaintext and the
1252 : : * destination is the ciphertext. For a decryption operation, the use is
1253 : : * reversed - the source is the ciphertext and the destination is the plaintext.
1254 : : */
1255 : : static inline void ablkcipher_request_set_crypt(
1256 : : struct ablkcipher_request *req,
1257 : : struct scatterlist *src, struct scatterlist *dst,
1258 : : unsigned int nbytes, void *iv)
1259 : : {
1260 : 0 : req->src = src;
1261 : 0 : req->dst = dst;
1262 : 0 : req->nbytes = nbytes;
1263 : 0 : req->info = iv;
1264 : : }
1265 : :
1266 : : /**
1267 : : * DOC: Synchronous Block Cipher API
1268 : : *
1269 : : * The synchronous block cipher API is used with the ciphers of type
1270 : : * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1271 : : *
1272 : : * Synchronous calls, have a context in the tfm. But since a single tfm can be
1273 : : * used in multiple calls and in parallel, this info should not be changeable
1274 : : * (unless a lock is used). This applies, for example, to the symmetric key.
1275 : : * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1276 : : * structure for synchronous blkcipher api. So, its the only state info that can
1277 : : * be kept for synchronous calls without using a big lock across a tfm.
1278 : : *
1279 : : * The block cipher API allows the use of a complete cipher, i.e. a cipher
1280 : : * consisting of a template (a block chaining mode) and a single block cipher
1281 : : * primitive (e.g. AES).
1282 : : *
1283 : : * The plaintext data buffer and the ciphertext data buffer are pointed to
1284 : : * by using scatter/gather lists. The cipher operation is performed
1285 : : * on all segments of the provided scatter/gather lists.
1286 : : *
1287 : : * The kernel crypto API supports a cipher operation "in-place" which means that
1288 : : * the caller may provide the same scatter/gather list for the plaintext and
1289 : : * cipher text. After the completion of the cipher operation, the plaintext
1290 : : * data is replaced with the ciphertext data in case of an encryption and vice
1291 : : * versa for a decryption. The caller must ensure that the scatter/gather lists
1292 : : * for the output data point to sufficiently large buffers, i.e. multiples of
1293 : : * the block size of the cipher.
1294 : : */
1295 : :
1296 : : static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1297 : : struct crypto_tfm *tfm)
1298 : : {
1299 : : return (struct crypto_blkcipher *)tfm;
1300 : : }
1301 : :
1302 : : static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1303 : : struct crypto_tfm *tfm)
1304 : : {
1305 : : BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1306 : : return __crypto_blkcipher_cast(tfm);
1307 : : }
1308 : :
1309 : : /**
1310 : : * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1311 : : * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1312 : : * blkcipher cipher
1313 : : * @type: specifies the type of the cipher
1314 : : * @mask: specifies the mask for the cipher
1315 : : *
1316 : : * Allocate a cipher handle for a block cipher. The returned struct
1317 : : * crypto_blkcipher is the cipher handle that is required for any subsequent
1318 : : * API invocation for that block cipher.
1319 : : *
1320 : : * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1321 : : * of an error, PTR_ERR() returns the error code.
1322 : : */
1323 : : static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1324 : : const char *alg_name, u32 type, u32 mask)
1325 : : {
1326 : : type &= ~CRYPTO_ALG_TYPE_MASK;
1327 : : type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1328 : : mask |= CRYPTO_ALG_TYPE_MASK;
1329 : :
1330 : : return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1331 : : }
1332 : :
1333 : : static inline struct crypto_tfm *crypto_blkcipher_tfm(
1334 : : struct crypto_blkcipher *tfm)
1335 : : {
1336 : 0 : return &tfm->base;
1337 : : }
1338 : :
1339 : : /**
1340 : : * crypto_free_blkcipher() - zeroize and free the block cipher handle
1341 : : * @tfm: cipher handle to be freed
1342 : : */
1343 : : static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1344 : : {
1345 : : crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1346 : : }
1347 : :
1348 : : /**
1349 : : * crypto_has_blkcipher() - Search for the availability of a block cipher
1350 : : * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1351 : : * block cipher
1352 : : * @type: specifies the type of the cipher
1353 : : * @mask: specifies the mask for the cipher
1354 : : *
1355 : : * Return: true when the block cipher is known to the kernel crypto API; false
1356 : : * otherwise
1357 : : */
1358 : : static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1359 : : {
1360 : : type &= ~CRYPTO_ALG_TYPE_MASK;
1361 : : type |= CRYPTO_ALG_TYPE_BLKCIPHER;
1362 : : mask |= CRYPTO_ALG_TYPE_MASK;
1363 : :
1364 : : return crypto_has_alg(alg_name, type, mask);
1365 : : }
1366 : :
1367 : : /**
1368 : : * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1369 : : * @tfm: cipher handle
1370 : : *
1371 : : * Return: The character string holding the name of the cipher
1372 : : */
1373 : : static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1374 : : {
1375 : : return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1376 : : }
1377 : :
1378 : : static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1379 : : struct crypto_blkcipher *tfm)
1380 : : {
1381 : : return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1382 : : }
1383 : :
1384 : : static inline struct blkcipher_alg *crypto_blkcipher_alg(
1385 : : struct crypto_blkcipher *tfm)
1386 : : {
1387 : 0 : return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1388 : : }
1389 : :
1390 : : /**
1391 : : * crypto_blkcipher_ivsize() - obtain IV size
1392 : : * @tfm: cipher handle
1393 : : *
1394 : : * The size of the IV for the block cipher referenced by the cipher handle is
1395 : : * returned. This IV size may be zero if the cipher does not need an IV.
1396 : : *
1397 : : * Return: IV size in bytes
1398 : : */
1399 : : static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1400 : : {
1401 : 0 : return crypto_blkcipher_alg(tfm)->ivsize;
1402 : : }
1403 : :
1404 : : /**
1405 : : * crypto_blkcipher_blocksize() - obtain block size of cipher
1406 : : * @tfm: cipher handle
1407 : : *
1408 : : * The block size for the block cipher referenced with the cipher handle is
1409 : : * returned. The caller may use that information to allocate appropriate
1410 : : * memory for the data returned by the encryption or decryption operation.
1411 : : *
1412 : : * Return: block size of cipher
1413 : : */
1414 : : static inline unsigned int crypto_blkcipher_blocksize(
1415 : : struct crypto_blkcipher *tfm)
1416 : : {
1417 : : return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1418 : : }
1419 : :
1420 : : static inline unsigned int crypto_blkcipher_alignmask(
1421 : : struct crypto_blkcipher *tfm)
1422 : : {
1423 : : return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1424 : : }
1425 : :
1426 : : static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1427 : : {
1428 : : return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1429 : : }
1430 : :
1431 : : static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1432 : : u32 flags)
1433 : : {
1434 : : crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1435 : : }
1436 : :
1437 : : static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1438 : : u32 flags)
1439 : : {
1440 : : crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1441 : : }
1442 : :
1443 : : /**
1444 : : * crypto_blkcipher_setkey() - set key for cipher
1445 : : * @tfm: cipher handle
1446 : : * @key: buffer holding the key
1447 : : * @keylen: length of the key in bytes
1448 : : *
1449 : : * The caller provided key is set for the block cipher referenced by the cipher
1450 : : * handle.
1451 : : *
1452 : : * Note, the key length determines the cipher type. Many block ciphers implement
1453 : : * different cipher modes depending on the key size, such as AES-128 vs AES-192
1454 : : * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1455 : : * is performed.
1456 : : *
1457 : : * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1458 : : */
1459 : : static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1460 : : const u8 *key, unsigned int keylen)
1461 : : {
1462 : 0 : return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1463 : : key, keylen);
1464 : : }
1465 : :
1466 : : /**
1467 : : * crypto_blkcipher_encrypt() - encrypt plaintext
1468 : : * @desc: reference to the block cipher handle with meta data
1469 : : * @dst: scatter/gather list that is filled by the cipher operation with the
1470 : : * ciphertext
1471 : : * @src: scatter/gather list that holds the plaintext
1472 : : * @nbytes: number of bytes of the plaintext to encrypt.
1473 : : *
1474 : : * Encrypt plaintext data using the IV set by the caller with a preceding
1475 : : * call of crypto_blkcipher_set_iv.
1476 : : *
1477 : : * The blkcipher_desc data structure must be filled by the caller and can
1478 : : * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1479 : : * with the block cipher handle; desc.flags is filled with either
1480 : : * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1481 : : *
1482 : : * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1483 : : */
1484 : : static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1485 : : struct scatterlist *dst,
1486 : : struct scatterlist *src,
1487 : : unsigned int nbytes)
1488 : : {
1489 : : desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1490 : : return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1491 : : }
1492 : :
1493 : : /**
1494 : : * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1495 : : * @desc: reference to the block cipher handle with meta data
1496 : : * @dst: scatter/gather list that is filled by the cipher operation with the
1497 : : * ciphertext
1498 : : * @src: scatter/gather list that holds the plaintext
1499 : : * @nbytes: number of bytes of the plaintext to encrypt.
1500 : : *
1501 : : * Encrypt plaintext data with the use of an IV that is solely used for this
1502 : : * cipher operation. Any previously set IV is not used.
1503 : : *
1504 : : * The blkcipher_desc data structure must be filled by the caller and can
1505 : : * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1506 : : * with the block cipher handle; desc.info is filled with the IV to be used for
1507 : : * the current operation; desc.flags is filled with either
1508 : : * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1509 : : *
1510 : : * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1511 : : */
1512 : : static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1513 : : struct scatterlist *dst,
1514 : : struct scatterlist *src,
1515 : : unsigned int nbytes)
1516 : : {
1517 : : return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1518 : : }
1519 : :
1520 : : /**
1521 : : * crypto_blkcipher_decrypt() - decrypt ciphertext
1522 : : * @desc: reference to the block cipher handle with meta data
1523 : : * @dst: scatter/gather list that is filled by the cipher operation with the
1524 : : * plaintext
1525 : : * @src: scatter/gather list that holds the ciphertext
1526 : : * @nbytes: number of bytes of the ciphertext to decrypt.
1527 : : *
1528 : : * Decrypt ciphertext data using the IV set by the caller with a preceding
1529 : : * call of crypto_blkcipher_set_iv.
1530 : : *
1531 : : * The blkcipher_desc data structure must be filled by the caller as documented
1532 : : * for the crypto_blkcipher_encrypt call above.
1533 : : *
1534 : : * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1535 : : *
1536 : : */
1537 : : static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1538 : : struct scatterlist *dst,
1539 : : struct scatterlist *src,
1540 : : unsigned int nbytes)
1541 : : {
1542 : : desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1543 : : return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1544 : : }
1545 : :
1546 : : /**
1547 : : * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1548 : : * @desc: reference to the block cipher handle with meta data
1549 : : * @dst: scatter/gather list that is filled by the cipher operation with the
1550 : : * plaintext
1551 : : * @src: scatter/gather list that holds the ciphertext
1552 : : * @nbytes: number of bytes of the ciphertext to decrypt.
1553 : : *
1554 : : * Decrypt ciphertext data with the use of an IV that is solely used for this
1555 : : * cipher operation. Any previously set IV is not used.
1556 : : *
1557 : : * The blkcipher_desc data structure must be filled by the caller as documented
1558 : : * for the crypto_blkcipher_encrypt_iv call above.
1559 : : *
1560 : : * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1561 : : */
1562 : : static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1563 : : struct scatterlist *dst,
1564 : : struct scatterlist *src,
1565 : : unsigned int nbytes)
1566 : : {
1567 : : return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1568 : : }
1569 : :
1570 : : /**
1571 : : * crypto_blkcipher_set_iv() - set IV for cipher
1572 : : * @tfm: cipher handle
1573 : : * @src: buffer holding the IV
1574 : : * @len: length of the IV in bytes
1575 : : *
1576 : : * The caller provided IV is set for the block cipher referenced by the cipher
1577 : : * handle.
1578 : : */
1579 : : static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1580 : : const u8 *src, unsigned int len)
1581 : : {
1582 : : memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1583 : : }
1584 : :
1585 : : /**
1586 : : * crypto_blkcipher_get_iv() - obtain IV from cipher
1587 : : * @tfm: cipher handle
1588 : : * @dst: buffer filled with the IV
1589 : : * @len: length of the buffer dst
1590 : : *
1591 : : * The caller can obtain the IV set for the block cipher referenced by the
1592 : : * cipher handle and store it into the user-provided buffer. If the buffer
1593 : : * has an insufficient space, the IV is truncated to fit the buffer.
1594 : : */
1595 : : static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1596 : : u8 *dst, unsigned int len)
1597 : : {
1598 : : memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1599 : : }
1600 : :
1601 : : /**
1602 : : * DOC: Single Block Cipher API
1603 : : *
1604 : : * The single block cipher API is used with the ciphers of type
1605 : : * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1606 : : *
1607 : : * Using the single block cipher API calls, operations with the basic cipher
1608 : : * primitive can be implemented. These cipher primitives exclude any block
1609 : : * chaining operations including IV handling.
1610 : : *
1611 : : * The purpose of this single block cipher API is to support the implementation
1612 : : * of templates or other concepts that only need to perform the cipher operation
1613 : : * on one block at a time. Templates invoke the underlying cipher primitive
1614 : : * block-wise and process either the input or the output data of these cipher
1615 : : * operations.
1616 : : */
1617 : :
1618 : : static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1619 : : {
1620 : : return (struct crypto_cipher *)tfm;
1621 : : }
1622 : :
1623 : : static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1624 : : {
1625 : : BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1626 : : return __crypto_cipher_cast(tfm);
1627 : : }
1628 : :
1629 : : /**
1630 : : * crypto_alloc_cipher() - allocate single block cipher handle
1631 : : * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1632 : : * single block cipher
1633 : : * @type: specifies the type of the cipher
1634 : : * @mask: specifies the mask for the cipher
1635 : : *
1636 : : * Allocate a cipher handle for a single block cipher. The returned struct
1637 : : * crypto_cipher is the cipher handle that is required for any subsequent API
1638 : : * invocation for that single block cipher.
1639 : : *
1640 : : * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1641 : : * of an error, PTR_ERR() returns the error code.
1642 : : */
1643 : : static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1644 : : u32 type, u32 mask)
1645 : : {
1646 : : type &= ~CRYPTO_ALG_TYPE_MASK;
1647 : : type |= CRYPTO_ALG_TYPE_CIPHER;
1648 : : mask |= CRYPTO_ALG_TYPE_MASK;
1649 : :
1650 : 0 : return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1651 : : }
1652 : :
1653 : : static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1654 : : {
1655 : 0 : return &tfm->base;
1656 : : }
1657 : :
1658 : : /**
1659 : : * crypto_free_cipher() - zeroize and free the single block cipher handle
1660 : : * @tfm: cipher handle to be freed
1661 : : */
1662 : : static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1663 : : {
1664 : : crypto_free_tfm(crypto_cipher_tfm(tfm));
1665 : : }
1666 : :
1667 : : /**
1668 : : * crypto_has_cipher() - Search for the availability of a single block cipher
1669 : : * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1670 : : * single block cipher
1671 : : * @type: specifies the type of the cipher
1672 : : * @mask: specifies the mask for the cipher
1673 : : *
1674 : : * Return: true when the single block cipher is known to the kernel crypto API;
1675 : : * false otherwise
1676 : : */
1677 : : static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1678 : : {
1679 : : type &= ~CRYPTO_ALG_TYPE_MASK;
1680 : : type |= CRYPTO_ALG_TYPE_CIPHER;
1681 : : mask |= CRYPTO_ALG_TYPE_MASK;
1682 : :
1683 : : return crypto_has_alg(alg_name, type, mask);
1684 : : }
1685 : :
1686 : : static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1687 : : {
1688 : : return &crypto_cipher_tfm(tfm)->crt_cipher;
1689 : : }
1690 : :
1691 : : /**
1692 : : * crypto_cipher_blocksize() - obtain block size for cipher
1693 : : * @tfm: cipher handle
1694 : : *
1695 : : * The block size for the single block cipher referenced with the cipher handle
1696 : : * tfm is returned. The caller may use that information to allocate appropriate
1697 : : * memory for the data returned by the encryption or decryption operation
1698 : : *
1699 : : * Return: block size of cipher
1700 : : */
1701 : : static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1702 : : {
1703 : : return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1704 : : }
1705 : :
1706 : : static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1707 : : {
1708 : : return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1709 : : }
1710 : :
1711 : : static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1712 : : {
1713 : : return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1714 : : }
1715 : :
1716 : : static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1717 : : u32 flags)
1718 : : {
1719 : : crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1720 : : }
1721 : :
1722 : : static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1723 : : u32 flags)
1724 : : {
1725 : : crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1726 : : }
1727 : :
1728 : : /**
1729 : : * crypto_cipher_setkey() - set key for cipher
1730 : : * @tfm: cipher handle
1731 : : * @key: buffer holding the key
1732 : : * @keylen: length of the key in bytes
1733 : : *
1734 : : * The caller provided key is set for the single block cipher referenced by the
1735 : : * cipher handle.
1736 : : *
1737 : : * Note, the key length determines the cipher type. Many block ciphers implement
1738 : : * different cipher modes depending on the key size, such as AES-128 vs AES-192
1739 : : * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1740 : : * is performed.
1741 : : *
1742 : : * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1743 : : */
1744 : : static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1745 : : const u8 *key, unsigned int keylen)
1746 : : {
1747 : 0 : return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1748 : : key, keylen);
1749 : : }
1750 : :
1751 : : /**
1752 : : * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1753 : : * @tfm: cipher handle
1754 : : * @dst: points to the buffer that will be filled with the ciphertext
1755 : : * @src: buffer holding the plaintext to be encrypted
1756 : : *
1757 : : * Invoke the encryption operation of one block. The caller must ensure that
1758 : : * the plaintext and ciphertext buffers are at least one block in size.
1759 : : */
1760 : : static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1761 : : u8 *dst, const u8 *src)
1762 : : {
1763 : 0 : crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1764 : : dst, src);
1765 : : }
1766 : :
1767 : : /**
1768 : : * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1769 : : * @tfm: cipher handle
1770 : : * @dst: points to the buffer that will be filled with the plaintext
1771 : : * @src: buffer holding the ciphertext to be decrypted
1772 : : *
1773 : : * Invoke the decryption operation of one block. The caller must ensure that
1774 : : * the plaintext and ciphertext buffers are at least one block in size.
1775 : : */
1776 : : static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1777 : : u8 *dst, const u8 *src)
1778 : : {
1779 : 0 : crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1780 : : dst, src);
1781 : : }
1782 : :
1783 : : static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1784 : : {
1785 : : return (struct crypto_comp *)tfm;
1786 : : }
1787 : :
1788 : : static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1789 : : {
1790 : : BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1791 : : CRYPTO_ALG_TYPE_MASK);
1792 : : return __crypto_comp_cast(tfm);
1793 : : }
1794 : :
1795 : : static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1796 : : u32 type, u32 mask)
1797 : : {
1798 : : type &= ~CRYPTO_ALG_TYPE_MASK;
1799 : : type |= CRYPTO_ALG_TYPE_COMPRESS;
1800 : : mask |= CRYPTO_ALG_TYPE_MASK;
1801 : :
1802 : 0 : return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1803 : : }
1804 : :
1805 : : static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1806 : : {
1807 : 0 : return &tfm->base;
1808 : : }
1809 : :
1810 : : static inline void crypto_free_comp(struct crypto_comp *tfm)
1811 : : {
1812 : : crypto_free_tfm(crypto_comp_tfm(tfm));
1813 : : }
1814 : :
1815 : : static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1816 : : {
1817 : : type &= ~CRYPTO_ALG_TYPE_MASK;
1818 : : type |= CRYPTO_ALG_TYPE_COMPRESS;
1819 : : mask |= CRYPTO_ALG_TYPE_MASK;
1820 : :
1821 : 0 : return crypto_has_alg(alg_name, type, mask);
1822 : : }
1823 : :
1824 : : static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1825 : : {
1826 : : return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1827 : : }
1828 : :
1829 : : static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1830 : : {
1831 : : return &crypto_comp_tfm(tfm)->crt_compress;
1832 : : }
1833 : :
1834 : : static inline int crypto_comp_compress(struct crypto_comp *tfm,
1835 : : const u8 *src, unsigned int slen,
1836 : : u8 *dst, unsigned int *dlen)
1837 : : {
1838 : 0 : return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1839 : : src, slen, dst, dlen);
1840 : : }
1841 : :
1842 : : static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1843 : : const u8 *src, unsigned int slen,
1844 : : u8 *dst, unsigned int *dlen)
1845 : : {
1846 : 0 : return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1847 : : src, slen, dst, dlen);
1848 : : }
1849 : :
1850 : : #endif /* _LINUX_CRYPTO_H */
1851 : :
|