Branch data Line data Source code
1 : : /* SPDX-License-Identifier: GPL-2.0-or-later
2 : : *
3 : : * Copyright (C) 2005 David Brownell
4 : : */
5 : :
6 : : #ifndef __LINUX_SPI_H
7 : : #define __LINUX_SPI_H
8 : :
9 : : #include <linux/device.h>
10 : : #include <linux/mod_devicetable.h>
11 : : #include <linux/slab.h>
12 : : #include <linux/kthread.h>
13 : : #include <linux/completion.h>
14 : : #include <linux/scatterlist.h>
15 : : #include <linux/gpio/consumer.h>
16 : :
17 : : struct dma_chan;
18 : : struct property_entry;
19 : : struct spi_controller;
20 : : struct spi_transfer;
21 : : struct spi_controller_mem_ops;
22 : :
23 : : /*
24 : : * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
25 : : * and SPI infrastructure.
26 : : */
27 : : extern struct bus_type spi_bus_type;
28 : :
29 : : /**
30 : : * struct spi_statistics - statistics for spi transfers
31 : : * @lock: lock protecting this structure
32 : : *
33 : : * @messages: number of spi-messages handled
34 : : * @transfers: number of spi_transfers handled
35 : : * @errors: number of errors during spi_transfer
36 : : * @timedout: number of timeouts during spi_transfer
37 : : *
38 : : * @spi_sync: number of times spi_sync is used
39 : : * @spi_sync_immediate:
40 : : * number of times spi_sync is executed immediately
41 : : * in calling context without queuing and scheduling
42 : : * @spi_async: number of times spi_async is used
43 : : *
44 : : * @bytes: number of bytes transferred to/from device
45 : : * @bytes_tx: number of bytes sent to device
46 : : * @bytes_rx: number of bytes received from device
47 : : *
48 : : * @transfer_bytes_histo:
49 : : * transfer bytes histogramm
50 : : *
51 : : * @transfers_split_maxsize:
52 : : * number of transfers that have been split because of
53 : : * maxsize limit
54 : : */
55 : : struct spi_statistics {
56 : : spinlock_t lock; /* lock for the whole structure */
57 : :
58 : : unsigned long messages;
59 : : unsigned long transfers;
60 : : unsigned long errors;
61 : : unsigned long timedout;
62 : :
63 : : unsigned long spi_sync;
64 : : unsigned long spi_sync_immediate;
65 : : unsigned long spi_async;
66 : :
67 : : unsigned long long bytes;
68 : : unsigned long long bytes_rx;
69 : : unsigned long long bytes_tx;
70 : :
71 : : #define SPI_STATISTICS_HISTO_SIZE 17
72 : : unsigned long transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
73 : :
74 : : unsigned long transfers_split_maxsize;
75 : : };
76 : :
77 : : void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
78 : : struct spi_transfer *xfer,
79 : : struct spi_controller *ctlr);
80 : :
81 : : #define SPI_STATISTICS_ADD_TO_FIELD(stats, field, count) \
82 : : do { \
83 : : unsigned long flags; \
84 : : spin_lock_irqsave(&(stats)->lock, flags); \
85 : : (stats)->field += count; \
86 : : spin_unlock_irqrestore(&(stats)->lock, flags); \
87 : : } while (0)
88 : :
89 : : #define SPI_STATISTICS_INCREMENT_FIELD(stats, field) \
90 : : SPI_STATISTICS_ADD_TO_FIELD(stats, field, 1)
91 : :
92 : : /**
93 : : * struct spi_device - Controller side proxy for an SPI slave device
94 : : * @dev: Driver model representation of the device.
95 : : * @controller: SPI controller used with the device.
96 : : * @master: Copy of controller, for backwards compatibility.
97 : : * @max_speed_hz: Maximum clock rate to be used with this chip
98 : : * (on this board); may be changed by the device's driver.
99 : : * The spi_transfer.speed_hz can override this for each transfer.
100 : : * @chip_select: Chipselect, distinguishing chips handled by @controller.
101 : : * @mode: The spi mode defines how data is clocked out and in.
102 : : * This may be changed by the device's driver.
103 : : * The "active low" default for chipselect mode can be overridden
104 : : * (by specifying SPI_CS_HIGH) as can the "MSB first" default for
105 : : * each word in a transfer (by specifying SPI_LSB_FIRST).
106 : : * @bits_per_word: Data transfers involve one or more words; word sizes
107 : : * like eight or 12 bits are common. In-memory wordsizes are
108 : : * powers of two bytes (e.g. 20 bit samples use 32 bits).
109 : : * This may be changed by the device's driver, or left at the
110 : : * default (0) indicating protocol words are eight bit bytes.
111 : : * The spi_transfer.bits_per_word can override this for each transfer.
112 : : * @rt: Make the pump thread real time priority.
113 : : * @irq: Negative, or the number passed to request_irq() to receive
114 : : * interrupts from this device.
115 : : * @controller_state: Controller's runtime state
116 : : * @controller_data: Board-specific definitions for controller, such as
117 : : * FIFO initialization parameters; from board_info.controller_data
118 : : * @modalias: Name of the driver to use with this device, or an alias
119 : : * for that name. This appears in the sysfs "modalias" attribute
120 : : * for driver coldplugging, and in uevents used for hotplugging
121 : : * @cs_gpio: LEGACY: gpio number of the chipselect line (optional, -ENOENT when
122 : : * not using a GPIO line) use cs_gpiod in new drivers by opting in on
123 : : * the spi_master.
124 : : * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
125 : : * not using a GPIO line)
126 : : * @word_delay_usecs: microsecond delay to be inserted between consecutive
127 : : * words of a transfer
128 : : *
129 : : * @statistics: statistics for the spi_device
130 : : *
131 : : * A @spi_device is used to interchange data between an SPI slave
132 : : * (usually a discrete chip) and CPU memory.
133 : : *
134 : : * In @dev, the platform_data is used to hold information about this
135 : : * device that's meaningful to the device's protocol driver, but not
136 : : * to its controller. One example might be an identifier for a chip
137 : : * variant with slightly different functionality; another might be
138 : : * information about how this particular board wires the chip's pins.
139 : : */
140 : : struct spi_device {
141 : : struct device dev;
142 : : struct spi_controller *controller;
143 : : struct spi_controller *master; /* compatibility layer */
144 : : u32 max_speed_hz;
145 : : u8 chip_select;
146 : : u8 bits_per_word;
147 : : bool rt;
148 : : u32 mode;
149 : : #define SPI_CPHA 0x01 /* clock phase */
150 : : #define SPI_CPOL 0x02 /* clock polarity */
151 : : #define SPI_MODE_0 (0|0) /* (original MicroWire) */
152 : : #define SPI_MODE_1 (0|SPI_CPHA)
153 : : #define SPI_MODE_2 (SPI_CPOL|0)
154 : : #define SPI_MODE_3 (SPI_CPOL|SPI_CPHA)
155 : : #define SPI_CS_HIGH 0x04 /* chipselect active high? */
156 : : #define SPI_LSB_FIRST 0x08 /* per-word bits-on-wire */
157 : : #define SPI_3WIRE 0x10 /* SI/SO signals shared */
158 : : #define SPI_LOOP 0x20 /* loopback mode */
159 : : #define SPI_NO_CS 0x40 /* 1 dev/bus, no chipselect */
160 : : #define SPI_READY 0x80 /* slave pulls low to pause */
161 : : #define SPI_TX_DUAL 0x100 /* transmit with 2 wires */
162 : : #define SPI_TX_QUAD 0x200 /* transmit with 4 wires */
163 : : #define SPI_RX_DUAL 0x400 /* receive with 2 wires */
164 : : #define SPI_RX_QUAD 0x800 /* receive with 4 wires */
165 : : #define SPI_CS_WORD 0x1000 /* toggle cs after each word */
166 : : #define SPI_TX_OCTAL 0x2000 /* transmit with 8 wires */
167 : : #define SPI_RX_OCTAL 0x4000 /* receive with 8 wires */
168 : : #define SPI_3WIRE_HIZ 0x8000 /* high impedance turnaround */
169 : : int irq;
170 : : void *controller_state;
171 : : void *controller_data;
172 : : char modalias[SPI_NAME_SIZE];
173 : : const char *driver_override;
174 : : int cs_gpio; /* LEGACY: chip select gpio */
175 : : struct gpio_desc *cs_gpiod; /* chip select gpio desc */
176 : : uint8_t word_delay_usecs; /* inter-word delay */
177 : :
178 : : /* the statistics */
179 : : struct spi_statistics statistics;
180 : :
181 : : /*
182 : : * likely need more hooks for more protocol options affecting how
183 : : * the controller talks to each chip, like:
184 : : * - memory packing (12 bit samples into low bits, others zeroed)
185 : : * - priority
186 : : * - chipselect delays
187 : : * - ...
188 : : */
189 : : };
190 : :
191 : : static inline struct spi_device *to_spi_device(struct device *dev)
192 : : {
193 [ # # # # : 0 : return dev ? container_of(dev, struct spi_device, dev) : NULL;
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# # # # #
# ]
194 : : }
195 : :
196 : : /* most drivers won't need to care about device refcounting */
197 : : static inline struct spi_device *spi_dev_get(struct spi_device *spi)
198 : : {
199 : : return (spi && get_device(&spi->dev)) ? spi : NULL;
200 : : }
201 : :
202 : : static inline void spi_dev_put(struct spi_device *spi)
203 : : {
204 [ # # # # : 0 : if (spi)
# # ]
205 : 0 : put_device(&spi->dev);
206 : : }
207 : :
208 : : /* ctldata is for the bus_controller driver's runtime state */
209 : : static inline void *spi_get_ctldata(struct spi_device *spi)
210 : : {
211 : : return spi->controller_state;
212 : : }
213 : :
214 : : static inline void spi_set_ctldata(struct spi_device *spi, void *state)
215 : : {
216 : : spi->controller_state = state;
217 : : }
218 : :
219 : : /* device driver data */
220 : :
221 : : static inline void spi_set_drvdata(struct spi_device *spi, void *data)
222 : : {
223 : : dev_set_drvdata(&spi->dev, data);
224 : : }
225 : :
226 : : static inline void *spi_get_drvdata(struct spi_device *spi)
227 : : {
228 : : return dev_get_drvdata(&spi->dev);
229 : : }
230 : :
231 : : struct spi_message;
232 : : struct spi_transfer;
233 : :
234 : : /**
235 : : * struct spi_driver - Host side "protocol" driver
236 : : * @id_table: List of SPI devices supported by this driver
237 : : * @probe: Binds this driver to the spi device. Drivers can verify
238 : : * that the device is actually present, and may need to configure
239 : : * characteristics (such as bits_per_word) which weren't needed for
240 : : * the initial configuration done during system setup.
241 : : * @remove: Unbinds this driver from the spi device
242 : : * @shutdown: Standard shutdown callback used during system state
243 : : * transitions such as powerdown/halt and kexec
244 : : * @driver: SPI device drivers should initialize the name and owner
245 : : * field of this structure.
246 : : *
247 : : * This represents the kind of device driver that uses SPI messages to
248 : : * interact with the hardware at the other end of a SPI link. It's called
249 : : * a "protocol" driver because it works through messages rather than talking
250 : : * directly to SPI hardware (which is what the underlying SPI controller
251 : : * driver does to pass those messages). These protocols are defined in the
252 : : * specification for the device(s) supported by the driver.
253 : : *
254 : : * As a rule, those device protocols represent the lowest level interface
255 : : * supported by a driver, and it will support upper level interfaces too.
256 : : * Examples of such upper levels include frameworks like MTD, networking,
257 : : * MMC, RTC, filesystem character device nodes, and hardware monitoring.
258 : : */
259 : : struct spi_driver {
260 : : const struct spi_device_id *id_table;
261 : : int (*probe)(struct spi_device *spi);
262 : : int (*remove)(struct spi_device *spi);
263 : : void (*shutdown)(struct spi_device *spi);
264 : : struct device_driver driver;
265 : : };
266 : :
267 : : static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
268 : : {
269 [ # # # # : 0 : return drv ? container_of(drv, struct spi_driver, driver) : NULL;
# # # # #
# ]
270 : : }
271 : :
272 : : extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
273 : :
274 : : /**
275 : : * spi_unregister_driver - reverse effect of spi_register_driver
276 : : * @sdrv: the driver to unregister
277 : : * Context: can sleep
278 : : */
279 : : static inline void spi_unregister_driver(struct spi_driver *sdrv)
280 : : {
281 [ # # ]: 0 : if (sdrv)
282 : 0 : driver_unregister(&sdrv->driver);
283 : : }
284 : :
285 : : /* use a define to avoid include chaining to get THIS_MODULE */
286 : : #define spi_register_driver(driver) \
287 : : __spi_register_driver(THIS_MODULE, driver)
288 : :
289 : : /**
290 : : * module_spi_driver() - Helper macro for registering a SPI driver
291 : : * @__spi_driver: spi_driver struct
292 : : *
293 : : * Helper macro for SPI drivers which do not do anything special in module
294 : : * init/exit. This eliminates a lot of boilerplate. Each module may only
295 : : * use this macro once, and calling it replaces module_init() and module_exit()
296 : : */
297 : : #define module_spi_driver(__spi_driver) \
298 : : module_driver(__spi_driver, spi_register_driver, \
299 : : spi_unregister_driver)
300 : :
301 : : /**
302 : : * struct spi_controller - interface to SPI master or slave controller
303 : : * @dev: device interface to this driver
304 : : * @list: link with the global spi_controller list
305 : : * @bus_num: board-specific (and often SOC-specific) identifier for a
306 : : * given SPI controller.
307 : : * @num_chipselect: chipselects are used to distinguish individual
308 : : * SPI slaves, and are numbered from zero to num_chipselects.
309 : : * each slave has a chipselect signal, but it's common that not
310 : : * every chipselect is connected to a slave.
311 : : * @dma_alignment: SPI controller constraint on DMA buffers alignment.
312 : : * @mode_bits: flags understood by this controller driver
313 : : * @bits_per_word_mask: A mask indicating which values of bits_per_word are
314 : : * supported by the driver. Bit n indicates that a bits_per_word n+1 is
315 : : * supported. If set, the SPI core will reject any transfer with an
316 : : * unsupported bits_per_word. If not set, this value is simply ignored,
317 : : * and it's up to the individual driver to perform any validation.
318 : : * @min_speed_hz: Lowest supported transfer speed
319 : : * @max_speed_hz: Highest supported transfer speed
320 : : * @flags: other constraints relevant to this driver
321 : : * @slave: indicates that this is an SPI slave controller
322 : : * @max_transfer_size: function that returns the max transfer size for
323 : : * a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
324 : : * @max_message_size: function that returns the max message size for
325 : : * a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
326 : : * @io_mutex: mutex for physical bus access
327 : : * @bus_lock_spinlock: spinlock for SPI bus locking
328 : : * @bus_lock_mutex: mutex for exclusion of multiple callers
329 : : * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
330 : : * @setup: updates the device mode and clocking records used by a
331 : : * device's SPI controller; protocol code may call this. This
332 : : * must fail if an unrecognized or unsupported mode is requested.
333 : : * It's always safe to call this unless transfers are pending on
334 : : * the device whose settings are being modified.
335 : : * @set_cs_timing: optional hook for SPI devices to request SPI master
336 : : * controller for configuring specific CS setup time, hold time and inactive
337 : : * delay interms of clock counts
338 : : * @transfer: adds a message to the controller's transfer queue.
339 : : * @cleanup: frees controller-specific state
340 : : * @can_dma: determine whether this controller supports DMA
341 : : * @queued: whether this controller is providing an internal message queue
342 : : * @kworker: thread struct for message pump
343 : : * @kworker_task: pointer to task for message pump kworker thread
344 : : * @pump_messages: work struct for scheduling work to the message pump
345 : : * @queue_lock: spinlock to syncronise access to message queue
346 : : * @queue: message queue
347 : : * @idling: the device is entering idle state
348 : : * @cur_msg: the currently in-flight message
349 : : * @cur_msg_prepared: spi_prepare_message was called for the currently
350 : : * in-flight message
351 : : * @cur_msg_mapped: message has been mapped for DMA
352 : : * @xfer_completion: used by core transfer_one_message()
353 : : * @busy: message pump is busy
354 : : * @running: message pump is running
355 : : * @rt: whether this queue is set to run as a realtime task
356 : : * @auto_runtime_pm: the core should ensure a runtime PM reference is held
357 : : * while the hardware is prepared, using the parent
358 : : * device for the spidev
359 : : * @max_dma_len: Maximum length of a DMA transfer for the device.
360 : : * @prepare_transfer_hardware: a message will soon arrive from the queue
361 : : * so the subsystem requests the driver to prepare the transfer hardware
362 : : * by issuing this call
363 : : * @transfer_one_message: the subsystem calls the driver to transfer a single
364 : : * message while queuing transfers that arrive in the meantime. When the
365 : : * driver is finished with this message, it must call
366 : : * spi_finalize_current_message() so the subsystem can issue the next
367 : : * message
368 : : * @unprepare_transfer_hardware: there are currently no more messages on the
369 : : * queue so the subsystem notifies the driver that it may relax the
370 : : * hardware by issuing this call
371 : : *
372 : : * @set_cs: set the logic level of the chip select line. May be called
373 : : * from interrupt context.
374 : : * @prepare_message: set up the controller to transfer a single message,
375 : : * for example doing DMA mapping. Called from threaded
376 : : * context.
377 : : * @transfer_one: transfer a single spi_transfer.
378 : : * - return 0 if the transfer is finished,
379 : : * - return 1 if the transfer is still in progress. When
380 : : * the driver is finished with this transfer it must
381 : : * call spi_finalize_current_transfer() so the subsystem
382 : : * can issue the next transfer. Note: transfer_one and
383 : : * transfer_one_message are mutually exclusive; when both
384 : : * are set, the generic subsystem does not call your
385 : : * transfer_one callback.
386 : : * @handle_err: the subsystem calls the driver to handle an error that occurs
387 : : * in the generic implementation of transfer_one_message().
388 : : * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
389 : : * This field is optional and should only be implemented if the
390 : : * controller has native support for memory like operations.
391 : : * @unprepare_message: undo any work done by prepare_message().
392 : : * @slave_abort: abort the ongoing transfer request on an SPI slave controller
393 : : * @cs_gpios: LEGACY: array of GPIO descs to use as chip select lines; one per
394 : : * CS number. Any individual value may be -ENOENT for CS lines that
395 : : * are not GPIOs (driven by the SPI controller itself). Use the cs_gpiods
396 : : * in new drivers.
397 : : * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
398 : : * number. Any individual value may be NULL for CS lines that
399 : : * are not GPIOs (driven by the SPI controller itself).
400 : : * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
401 : : * GPIO descriptors rather than using global GPIO numbers grabbed by the
402 : : * driver. This will fill in @cs_gpiods and @cs_gpios should not be used,
403 : : * and SPI devices will have the cs_gpiod assigned rather than cs_gpio.
404 : : * @statistics: statistics for the spi_controller
405 : : * @dma_tx: DMA transmit channel
406 : : * @dma_rx: DMA receive channel
407 : : * @dummy_rx: dummy receive buffer for full-duplex devices
408 : : * @dummy_tx: dummy transmit buffer for full-duplex devices
409 : : * @fw_translate_cs: If the boot firmware uses different numbering scheme
410 : : * what Linux expects, this optional hook can be used to translate
411 : : * between the two.
412 : : *
413 : : * Each SPI controller can communicate with one or more @spi_device
414 : : * children. These make a small bus, sharing MOSI, MISO and SCK signals
415 : : * but not chip select signals. Each device may be configured to use a
416 : : * different clock rate, since those shared signals are ignored unless
417 : : * the chip is selected.
418 : : *
419 : : * The driver for an SPI controller manages access to those devices through
420 : : * a queue of spi_message transactions, copying data between CPU memory and
421 : : * an SPI slave device. For each such message it queues, it calls the
422 : : * message's completion function when the transaction completes.
423 : : */
424 : : struct spi_controller {
425 : : struct device dev;
426 : :
427 : : struct list_head list;
428 : :
429 : : /* other than negative (== assign one dynamically), bus_num is fully
430 : : * board-specific. usually that simplifies to being SOC-specific.
431 : : * example: one SOC has three SPI controllers, numbered 0..2,
432 : : * and one board's schematics might show it using SPI-2. software
433 : : * would normally use bus_num=2 for that controller.
434 : : */
435 : : s16 bus_num;
436 : :
437 : : /* chipselects will be integral to many controllers; some others
438 : : * might use board-specific GPIOs.
439 : : */
440 : : u16 num_chipselect;
441 : :
442 : : /* some SPI controllers pose alignment requirements on DMAable
443 : : * buffers; let protocol drivers know about these requirements.
444 : : */
445 : : u16 dma_alignment;
446 : :
447 : : /* spi_device.mode flags understood by this controller driver */
448 : : u32 mode_bits;
449 : :
450 : : /* bitmask of supported bits_per_word for transfers */
451 : : u32 bits_per_word_mask;
452 : : #define SPI_BPW_MASK(bits) BIT((bits) - 1)
453 : : #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
454 : :
455 : : /* limits on transfer speed */
456 : : u32 min_speed_hz;
457 : : u32 max_speed_hz;
458 : :
459 : : /* other constraints relevant to this driver */
460 : : u16 flags;
461 : : #define SPI_CONTROLLER_HALF_DUPLEX BIT(0) /* can't do full duplex */
462 : : #define SPI_CONTROLLER_NO_RX BIT(1) /* can't do buffer read */
463 : : #define SPI_CONTROLLER_NO_TX BIT(2) /* can't do buffer write */
464 : : #define SPI_CONTROLLER_MUST_RX BIT(3) /* requires rx */
465 : : #define SPI_CONTROLLER_MUST_TX BIT(4) /* requires tx */
466 : :
467 : : #define SPI_MASTER_GPIO_SS BIT(5) /* GPIO CS must select slave */
468 : :
469 : : /* flag indicating this is an SPI slave controller */
470 : : bool slave;
471 : :
472 : : /*
473 : : * on some hardware transfer / message size may be constrained
474 : : * the limit may depend on device transfer settings
475 : : */
476 : : size_t (*max_transfer_size)(struct spi_device *spi);
477 : : size_t (*max_message_size)(struct spi_device *spi);
478 : :
479 : : /* I/O mutex */
480 : : struct mutex io_mutex;
481 : :
482 : : /* lock and mutex for SPI bus locking */
483 : : spinlock_t bus_lock_spinlock;
484 : : struct mutex bus_lock_mutex;
485 : :
486 : : /* flag indicating that the SPI bus is locked for exclusive use */
487 : : bool bus_lock_flag;
488 : :
489 : : /* Setup mode and clock, etc (spi driver may call many times).
490 : : *
491 : : * IMPORTANT: this may be called when transfers to another
492 : : * device are active. DO NOT UPDATE SHARED REGISTERS in ways
493 : : * which could break those transfers.
494 : : */
495 : : int (*setup)(struct spi_device *spi);
496 : :
497 : : /*
498 : : * set_cs_timing() method is for SPI controllers that supports
499 : : * configuring CS timing.
500 : : *
501 : : * This hook allows SPI client drivers to request SPI controllers
502 : : * to configure specific CS timing through spi_set_cs_timing() after
503 : : * spi_setup().
504 : : */
505 : : void (*set_cs_timing)(struct spi_device *spi, u8 setup_clk_cycles,
506 : : u8 hold_clk_cycles, u8 inactive_clk_cycles);
507 : :
508 : : /* bidirectional bulk transfers
509 : : *
510 : : * + The transfer() method may not sleep; its main role is
511 : : * just to add the message to the queue.
512 : : * + For now there's no remove-from-queue operation, or
513 : : * any other request management
514 : : * + To a given spi_device, message queueing is pure fifo
515 : : *
516 : : * + The controller's main job is to process its message queue,
517 : : * selecting a chip (for masters), then transferring data
518 : : * + If there are multiple spi_device children, the i/o queue
519 : : * arbitration algorithm is unspecified (round robin, fifo,
520 : : * priority, reservations, preemption, etc)
521 : : *
522 : : * + Chipselect stays active during the entire message
523 : : * (unless modified by spi_transfer.cs_change != 0).
524 : : * + The message transfers use clock and SPI mode parameters
525 : : * previously established by setup() for this device
526 : : */
527 : : int (*transfer)(struct spi_device *spi,
528 : : struct spi_message *mesg);
529 : :
530 : : /* called on release() to free memory provided by spi_controller */
531 : : void (*cleanup)(struct spi_device *spi);
532 : :
533 : : /*
534 : : * Used to enable core support for DMA handling, if can_dma()
535 : : * exists and returns true then the transfer will be mapped
536 : : * prior to transfer_one() being called. The driver should
537 : : * not modify or store xfer and dma_tx and dma_rx must be set
538 : : * while the device is prepared.
539 : : */
540 : : bool (*can_dma)(struct spi_controller *ctlr,
541 : : struct spi_device *spi,
542 : : struct spi_transfer *xfer);
543 : :
544 : : /*
545 : : * These hooks are for drivers that want to use the generic
546 : : * controller transfer queueing mechanism. If these are used, the
547 : : * transfer() function above must NOT be specified by the driver.
548 : : * Over time we expect SPI drivers to be phased over to this API.
549 : : */
550 : : bool queued;
551 : : struct kthread_worker kworker;
552 : : struct task_struct *kworker_task;
553 : : struct kthread_work pump_messages;
554 : : spinlock_t queue_lock;
555 : : struct list_head queue;
556 : : struct spi_message *cur_msg;
557 : : bool idling;
558 : : bool busy;
559 : : bool running;
560 : : bool rt;
561 : : bool auto_runtime_pm;
562 : : bool cur_msg_prepared;
563 : : bool cur_msg_mapped;
564 : : struct completion xfer_completion;
565 : : size_t max_dma_len;
566 : :
567 : : int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
568 : : int (*transfer_one_message)(struct spi_controller *ctlr,
569 : : struct spi_message *mesg);
570 : : int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
571 : : int (*prepare_message)(struct spi_controller *ctlr,
572 : : struct spi_message *message);
573 : : int (*unprepare_message)(struct spi_controller *ctlr,
574 : : struct spi_message *message);
575 : : int (*slave_abort)(struct spi_controller *ctlr);
576 : :
577 : : /*
578 : : * These hooks are for drivers that use a generic implementation
579 : : * of transfer_one_message() provied by the core.
580 : : */
581 : : void (*set_cs)(struct spi_device *spi, bool enable);
582 : : int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
583 : : struct spi_transfer *transfer);
584 : : void (*handle_err)(struct spi_controller *ctlr,
585 : : struct spi_message *message);
586 : :
587 : : /* Optimized handlers for SPI memory-like operations. */
588 : : const struct spi_controller_mem_ops *mem_ops;
589 : :
590 : : /* gpio chip select */
591 : : int *cs_gpios;
592 : : struct gpio_desc **cs_gpiods;
593 : : bool use_gpio_descriptors;
594 : :
595 : : /* statistics */
596 : : struct spi_statistics statistics;
597 : :
598 : : /* DMA channels for use with core dmaengine helpers */
599 : : struct dma_chan *dma_tx;
600 : : struct dma_chan *dma_rx;
601 : :
602 : : /* dummy data for full duplex devices */
603 : : void *dummy_rx;
604 : : void *dummy_tx;
605 : :
606 : : int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
607 : : };
608 : :
609 : : static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
610 : : {
611 : : return dev_get_drvdata(&ctlr->dev);
612 : : }
613 : :
614 : : static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
615 : : void *data)
616 : : {
617 : : dev_set_drvdata(&ctlr->dev, data);
618 : : }
619 : :
620 : : static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
621 : : {
622 [ # # # # ]: 0 : if (!ctlr || !get_device(&ctlr->dev))
623 : : return NULL;
624 : : return ctlr;
625 : : }
626 : :
627 : : static inline void spi_controller_put(struct spi_controller *ctlr)
628 : : {
629 [ # # # # ]: 0 : if (ctlr)
630 : 0 : put_device(&ctlr->dev);
631 : : }
632 : :
633 : : static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
634 : : {
635 : 0 : return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
636 : : }
637 : :
638 : : /* PM calls that need to be issued by the driver */
639 : : extern int spi_controller_suspend(struct spi_controller *ctlr);
640 : : extern int spi_controller_resume(struct spi_controller *ctlr);
641 : :
642 : : /* Calls the driver make to interact with the message queue */
643 : : extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
644 : : extern void spi_finalize_current_message(struct spi_controller *ctlr);
645 : : extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
646 : :
647 : : /* the spi driver core manages memory for the spi_controller classdev */
648 : : extern struct spi_controller *__spi_alloc_controller(struct device *host,
649 : : unsigned int size, bool slave);
650 : :
651 : : static inline struct spi_controller *spi_alloc_master(struct device *host,
652 : : unsigned int size)
653 : : {
654 : : return __spi_alloc_controller(host, size, false);
655 : : }
656 : :
657 : : static inline struct spi_controller *spi_alloc_slave(struct device *host,
658 : : unsigned int size)
659 : : {
660 : : if (!IS_ENABLED(CONFIG_SPI_SLAVE))
661 : : return NULL;
662 : :
663 : : return __spi_alloc_controller(host, size, true);
664 : : }
665 : :
666 : : extern int spi_register_controller(struct spi_controller *ctlr);
667 : : extern int devm_spi_register_controller(struct device *dev,
668 : : struct spi_controller *ctlr);
669 : : extern void spi_unregister_controller(struct spi_controller *ctlr);
670 : :
671 : : extern struct spi_controller *spi_busnum_to_master(u16 busnum);
672 : :
673 : : /*
674 : : * SPI resource management while processing a SPI message
675 : : */
676 : :
677 : : typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
678 : : struct spi_message *msg,
679 : : void *res);
680 : :
681 : : /**
682 : : * struct spi_res - spi resource management structure
683 : : * @entry: list entry
684 : : * @release: release code called prior to freeing this resource
685 : : * @data: extra data allocated for the specific use-case
686 : : *
687 : : * this is based on ideas from devres, but focused on life-cycle
688 : : * management during spi_message processing
689 : : */
690 : : struct spi_res {
691 : : struct list_head entry;
692 : : spi_res_release_t release;
693 : : unsigned long long data[]; /* guarantee ull alignment */
694 : : };
695 : :
696 : : extern void *spi_res_alloc(struct spi_device *spi,
697 : : spi_res_release_t release,
698 : : size_t size, gfp_t gfp);
699 : : extern void spi_res_add(struct spi_message *message, void *res);
700 : : extern void spi_res_free(void *res);
701 : :
702 : : extern void spi_res_release(struct spi_controller *ctlr,
703 : : struct spi_message *message);
704 : :
705 : : /*---------------------------------------------------------------------------*/
706 : :
707 : : /*
708 : : * I/O INTERFACE between SPI controller and protocol drivers
709 : : *
710 : : * Protocol drivers use a queue of spi_messages, each transferring data
711 : : * between the controller and memory buffers.
712 : : *
713 : : * The spi_messages themselves consist of a series of read+write transfer
714 : : * segments. Those segments always read the same number of bits as they
715 : : * write; but one or the other is easily ignored by passing a null buffer
716 : : * pointer. (This is unlike most types of I/O API, because SPI hardware
717 : : * is full duplex.)
718 : : *
719 : : * NOTE: Allocation of spi_transfer and spi_message memory is entirely
720 : : * up to the protocol driver, which guarantees the integrity of both (as
721 : : * well as the data buffers) for as long as the message is queued.
722 : : */
723 : :
724 : : /**
725 : : * struct spi_transfer - a read/write buffer pair
726 : : * @tx_buf: data to be written (dma-safe memory), or NULL
727 : : * @rx_buf: data to be read (dma-safe memory), or NULL
728 : : * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
729 : : * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
730 : : * @tx_nbits: number of bits used for writing. If 0 the default
731 : : * (SPI_NBITS_SINGLE) is used.
732 : : * @rx_nbits: number of bits used for reading. If 0 the default
733 : : * (SPI_NBITS_SINGLE) is used.
734 : : * @len: size of rx and tx buffers (in bytes)
735 : : * @speed_hz: Select a speed other than the device default for this
736 : : * transfer. If 0 the default (from @spi_device) is used.
737 : : * @bits_per_word: select a bits_per_word other than the device default
738 : : * for this transfer. If 0 the default (from @spi_device) is used.
739 : : * @cs_change: affects chipselect after this transfer completes
740 : : * @cs_change_delay: delay between cs deassert and assert when
741 : : * @cs_change is set and @spi_transfer is not the last in @spi_message
742 : : * @cs_change_delay_unit: unit of cs_change_delay
743 : : * @delay_usecs: microseconds to delay after this transfer before
744 : : * (optionally) changing the chipselect status, then starting
745 : : * the next transfer or completing this @spi_message.
746 : : * @word_delay_usecs: microseconds to inter word delay after each word size
747 : : * (set by bits_per_word) transmission.
748 : : * @word_delay: clock cycles to inter word delay after each word size
749 : : * (set by bits_per_word) transmission.
750 : : * @effective_speed_hz: the effective SCK-speed that was used to
751 : : * transfer this transfer. Set to 0 if the spi bus driver does
752 : : * not support it.
753 : : * @transfer_list: transfers are sequenced through @spi_message.transfers
754 : : * @tx_sg: Scatterlist for transmit, currently not for client use
755 : : * @rx_sg: Scatterlist for receive, currently not for client use
756 : : *
757 : : * SPI transfers always write the same number of bytes as they read.
758 : : * Protocol drivers should always provide @rx_buf and/or @tx_buf.
759 : : * In some cases, they may also want to provide DMA addresses for
760 : : * the data being transferred; that may reduce overhead, when the
761 : : * underlying driver uses dma.
762 : : *
763 : : * If the transmit buffer is null, zeroes will be shifted out
764 : : * while filling @rx_buf. If the receive buffer is null, the data
765 : : * shifted in will be discarded. Only "len" bytes shift out (or in).
766 : : * It's an error to try to shift out a partial word. (For example, by
767 : : * shifting out three bytes with word size of sixteen or twenty bits;
768 : : * the former uses two bytes per word, the latter uses four bytes.)
769 : : *
770 : : * In-memory data values are always in native CPU byte order, translated
771 : : * from the wire byte order (big-endian except with SPI_LSB_FIRST). So
772 : : * for example when bits_per_word is sixteen, buffers are 2N bytes long
773 : : * (@len = 2N) and hold N sixteen bit words in CPU byte order.
774 : : *
775 : : * When the word size of the SPI transfer is not a power-of-two multiple
776 : : * of eight bits, those in-memory words include extra bits. In-memory
777 : : * words are always seen by protocol drivers as right-justified, so the
778 : : * undefined (rx) or unused (tx) bits are always the most significant bits.
779 : : *
780 : : * All SPI transfers start with the relevant chipselect active. Normally
781 : : * it stays selected until after the last transfer in a message. Drivers
782 : : * can affect the chipselect signal using cs_change.
783 : : *
784 : : * (i) If the transfer isn't the last one in the message, this flag is
785 : : * used to make the chipselect briefly go inactive in the middle of the
786 : : * message. Toggling chipselect in this way may be needed to terminate
787 : : * a chip command, letting a single spi_message perform all of group of
788 : : * chip transactions together.
789 : : *
790 : : * (ii) When the transfer is the last one in the message, the chip may
791 : : * stay selected until the next transfer. On multi-device SPI busses
792 : : * with nothing blocking messages going to other devices, this is just
793 : : * a performance hint; starting a message to another device deselects
794 : : * this one. But in other cases, this can be used to ensure correctness.
795 : : * Some devices need protocol transactions to be built from a series of
796 : : * spi_message submissions, where the content of one message is determined
797 : : * by the results of previous messages and where the whole transaction
798 : : * ends when the chipselect goes intactive.
799 : : *
800 : : * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
801 : : * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
802 : : * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
803 : : * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
804 : : *
805 : : * The code that submits an spi_message (and its spi_transfers)
806 : : * to the lower layers is responsible for managing its memory.
807 : : * Zero-initialize every field you don't set up explicitly, to
808 : : * insulate against future API updates. After you submit a message
809 : : * and its transfers, ignore them until its completion callback.
810 : : */
811 : : struct spi_transfer {
812 : : /* it's ok if tx_buf == rx_buf (right?)
813 : : * for MicroWire, one buffer must be null
814 : : * buffers must work with dma_*map_single() calls, unless
815 : : * spi_message.is_dma_mapped reports a pre-existing mapping
816 : : */
817 : : const void *tx_buf;
818 : : void *rx_buf;
819 : : unsigned len;
820 : :
821 : : dma_addr_t tx_dma;
822 : : dma_addr_t rx_dma;
823 : : struct sg_table tx_sg;
824 : : struct sg_table rx_sg;
825 : :
826 : : unsigned cs_change:1;
827 : : unsigned tx_nbits:3;
828 : : unsigned rx_nbits:3;
829 : : #define SPI_NBITS_SINGLE 0x01 /* 1bit transfer */
830 : : #define SPI_NBITS_DUAL 0x02 /* 2bits transfer */
831 : : #define SPI_NBITS_QUAD 0x04 /* 4bits transfer */
832 : : u8 bits_per_word;
833 : : u8 word_delay_usecs;
834 : : u16 delay_usecs;
835 : : u16 cs_change_delay;
836 : : u8 cs_change_delay_unit;
837 : : #define SPI_DELAY_UNIT_USECS 0
838 : : #define SPI_DELAY_UNIT_NSECS 1
839 : : #define SPI_DELAY_UNIT_SCK 2
840 : : u32 speed_hz;
841 : : u16 word_delay;
842 : :
843 : : u32 effective_speed_hz;
844 : :
845 : : struct list_head transfer_list;
846 : : };
847 : :
848 : : /**
849 : : * struct spi_message - one multi-segment SPI transaction
850 : : * @transfers: list of transfer segments in this transaction
851 : : * @spi: SPI device to which the transaction is queued
852 : : * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
853 : : * addresses for each transfer buffer
854 : : * @complete: called to report transaction completions
855 : : * @context: the argument to complete() when it's called
856 : : * @frame_length: the total number of bytes in the message
857 : : * @actual_length: the total number of bytes that were transferred in all
858 : : * successful segments
859 : : * @status: zero for success, else negative errno
860 : : * @queue: for use by whichever driver currently owns the message
861 : : * @state: for use by whichever driver currently owns the message
862 : : * @resources: for resource management when the spi message is processed
863 : : *
864 : : * A @spi_message is used to execute an atomic sequence of data transfers,
865 : : * each represented by a struct spi_transfer. The sequence is "atomic"
866 : : * in the sense that no other spi_message may use that SPI bus until that
867 : : * sequence completes. On some systems, many such sequences can execute as
868 : : * as single programmed DMA transfer. On all systems, these messages are
869 : : * queued, and might complete after transactions to other devices. Messages
870 : : * sent to a given spi_device are always executed in FIFO order.
871 : : *
872 : : * The code that submits an spi_message (and its spi_transfers)
873 : : * to the lower layers is responsible for managing its memory.
874 : : * Zero-initialize every field you don't set up explicitly, to
875 : : * insulate against future API updates. After you submit a message
876 : : * and its transfers, ignore them until its completion callback.
877 : : */
878 : : struct spi_message {
879 : : struct list_head transfers;
880 : :
881 : : struct spi_device *spi;
882 : :
883 : : unsigned is_dma_mapped:1;
884 : :
885 : : /* REVISIT: we might want a flag affecting the behavior of the
886 : : * last transfer ... allowing things like "read 16 bit length L"
887 : : * immediately followed by "read L bytes". Basically imposing
888 : : * a specific message scheduling algorithm.
889 : : *
890 : : * Some controller drivers (message-at-a-time queue processing)
891 : : * could provide that as their default scheduling algorithm. But
892 : : * others (with multi-message pipelines) could need a flag to
893 : : * tell them about such special cases.
894 : : */
895 : :
896 : : /* completion is reported through a callback */
897 : : void (*complete)(void *context);
898 : : void *context;
899 : : unsigned frame_length;
900 : : unsigned actual_length;
901 : : int status;
902 : :
903 : : /* for optional use by whatever driver currently owns the
904 : : * spi_message ... between calls to spi_async and then later
905 : : * complete(), that's the spi_controller controller driver.
906 : : */
907 : : struct list_head queue;
908 : : void *state;
909 : :
910 : : /* list of spi_res reources when the spi message is processed */
911 : : struct list_head resources;
912 : : };
913 : :
914 : : static inline void spi_message_init_no_memset(struct spi_message *m)
915 : : {
916 : 0 : INIT_LIST_HEAD(&m->transfers);
917 : 0 : INIT_LIST_HEAD(&m->resources);
918 : : }
919 : :
920 : : static inline void spi_message_init(struct spi_message *m)
921 : : {
922 : 0 : memset(m, 0, sizeof *m);
923 : : spi_message_init_no_memset(m);
924 : : }
925 : :
926 : : static inline void
927 : : spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
928 : : {
929 : 0 : list_add_tail(&t->transfer_list, &m->transfers);
930 : : }
931 : :
932 : : static inline void
933 : : spi_transfer_del(struct spi_transfer *t)
934 : : {
935 : : list_del(&t->transfer_list);
936 : : }
937 : :
938 : : /**
939 : : * spi_message_init_with_transfers - Initialize spi_message and append transfers
940 : : * @m: spi_message to be initialized
941 : : * @xfers: An array of spi transfers
942 : : * @num_xfers: Number of items in the xfer array
943 : : *
944 : : * This function initializes the given spi_message and adds each spi_transfer in
945 : : * the given array to the message.
946 : : */
947 : : static inline void
948 : 0 : spi_message_init_with_transfers(struct spi_message *m,
949 : : struct spi_transfer *xfers, unsigned int num_xfers)
950 : : {
951 : : unsigned int i;
952 : :
953 : : spi_message_init(m);
954 [ # # ]: 0 : for (i = 0; i < num_xfers; ++i)
955 : 0 : spi_message_add_tail(&xfers[i], m);
956 : 0 : }
957 : :
958 : : /* It's fine to embed message and transaction structures in other data
959 : : * structures so long as you don't free them while they're in use.
960 : : */
961 : :
962 : : static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
963 : : {
964 : : struct spi_message *m;
965 : :
966 : : m = kzalloc(sizeof(struct spi_message)
967 : : + ntrans * sizeof(struct spi_transfer),
968 : : flags);
969 : : if (m) {
970 : : unsigned i;
971 : : struct spi_transfer *t = (struct spi_transfer *)(m + 1);
972 : :
973 : : spi_message_init_no_memset(m);
974 : : for (i = 0; i < ntrans; i++, t++)
975 : : spi_message_add_tail(t, m);
976 : : }
977 : : return m;
978 : : }
979 : :
980 : : static inline void spi_message_free(struct spi_message *m)
981 : : {
982 : : kfree(m);
983 : : }
984 : :
985 : : extern void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold, u8 inactive_dly);
986 : :
987 : : extern int spi_setup(struct spi_device *spi);
988 : : extern int spi_async(struct spi_device *spi, struct spi_message *message);
989 : : extern int spi_async_locked(struct spi_device *spi,
990 : : struct spi_message *message);
991 : : extern int spi_slave_abort(struct spi_device *spi);
992 : :
993 : : static inline size_t
994 : : spi_max_message_size(struct spi_device *spi)
995 : : {
996 : 0 : struct spi_controller *ctlr = spi->controller;
997 : :
998 [ # # # # ]: 0 : if (!ctlr->max_message_size)
999 : : return SIZE_MAX;
1000 : 0 : return ctlr->max_message_size(spi);
1001 : : }
1002 : :
1003 : : static inline size_t
1004 : 0 : spi_max_transfer_size(struct spi_device *spi)
1005 : : {
1006 : 0 : struct spi_controller *ctlr = spi->controller;
1007 : : size_t tr_max = SIZE_MAX;
1008 : : size_t msg_max = spi_max_message_size(spi);
1009 : :
1010 [ # # ]: 0 : if (ctlr->max_transfer_size)
1011 : 0 : tr_max = ctlr->max_transfer_size(spi);
1012 : :
1013 : : /* transfer size limit must not be greater than messsage size limit */
1014 : 0 : return min(tr_max, msg_max);
1015 : : }
1016 : :
1017 : : /**
1018 : : * spi_is_bpw_supported - Check if bits per word is supported
1019 : : * @spi: SPI device
1020 : : * @bpw: Bits per word
1021 : : *
1022 : : * This function checks to see if the SPI controller supports @bpw.
1023 : : *
1024 : : * Returns:
1025 : : * True if @bpw is supported, false otherwise.
1026 : : */
1027 : : static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1028 : : {
1029 : : u32 bpw_mask = spi->master->bits_per_word_mask;
1030 : :
1031 : : if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1032 : : return true;
1033 : :
1034 : : return false;
1035 : : }
1036 : :
1037 : : /*---------------------------------------------------------------------------*/
1038 : :
1039 : : /* SPI transfer replacement methods which make use of spi_res */
1040 : :
1041 : : struct spi_replaced_transfers;
1042 : : typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1043 : : struct spi_message *msg,
1044 : : struct spi_replaced_transfers *res);
1045 : : /**
1046 : : * struct spi_replaced_transfers - structure describing the spi_transfer
1047 : : * replacements that have occurred
1048 : : * so that they can get reverted
1049 : : * @release: some extra release code to get executed prior to
1050 : : * relasing this structure
1051 : : * @extradata: pointer to some extra data if requested or NULL
1052 : : * @replaced_transfers: transfers that have been replaced and which need
1053 : : * to get restored
1054 : : * @replaced_after: the transfer after which the @replaced_transfers
1055 : : * are to get re-inserted
1056 : : * @inserted: number of transfers inserted
1057 : : * @inserted_transfers: array of spi_transfers of array-size @inserted,
1058 : : * that have been replacing replaced_transfers
1059 : : *
1060 : : * note: that @extradata will point to @inserted_transfers[@inserted]
1061 : : * if some extra allocation is requested, so alignment will be the same
1062 : : * as for spi_transfers
1063 : : */
1064 : : struct spi_replaced_transfers {
1065 : : spi_replaced_release_t release;
1066 : : void *extradata;
1067 : : struct list_head replaced_transfers;
1068 : : struct list_head *replaced_after;
1069 : : size_t inserted;
1070 : : struct spi_transfer inserted_transfers[];
1071 : : };
1072 : :
1073 : : extern struct spi_replaced_transfers *spi_replace_transfers(
1074 : : struct spi_message *msg,
1075 : : struct spi_transfer *xfer_first,
1076 : : size_t remove,
1077 : : size_t insert,
1078 : : spi_replaced_release_t release,
1079 : : size_t extradatasize,
1080 : : gfp_t gfp);
1081 : :
1082 : : /*---------------------------------------------------------------------------*/
1083 : :
1084 : : /* SPI transfer transformation methods */
1085 : :
1086 : : extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1087 : : struct spi_message *msg,
1088 : : size_t maxsize,
1089 : : gfp_t gfp);
1090 : :
1091 : : /*---------------------------------------------------------------------------*/
1092 : :
1093 : : /* All these synchronous SPI transfer routines are utilities layered
1094 : : * over the core async transfer primitive. Here, "synchronous" means
1095 : : * they will sleep uninterruptibly until the async transfer completes.
1096 : : */
1097 : :
1098 : : extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1099 : : extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1100 : : extern int spi_bus_lock(struct spi_controller *ctlr);
1101 : : extern int spi_bus_unlock(struct spi_controller *ctlr);
1102 : :
1103 : : /**
1104 : : * spi_sync_transfer - synchronous SPI data transfer
1105 : : * @spi: device with which data will be exchanged
1106 : : * @xfers: An array of spi_transfers
1107 : : * @num_xfers: Number of items in the xfer array
1108 : : * Context: can sleep
1109 : : *
1110 : : * Does a synchronous SPI data transfer of the given spi_transfer array.
1111 : : *
1112 : : * For more specific semantics see spi_sync().
1113 : : *
1114 : : * Return: Return: zero on success, else a negative error code.
1115 : : */
1116 : : static inline int
1117 : 0 : spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1118 : : unsigned int num_xfers)
1119 : : {
1120 : : struct spi_message msg;
1121 : :
1122 : 0 : spi_message_init_with_transfers(&msg, xfers, num_xfers);
1123 : :
1124 : 0 : return spi_sync(spi, &msg);
1125 : : }
1126 : :
1127 : : /**
1128 : : * spi_write - SPI synchronous write
1129 : : * @spi: device to which data will be written
1130 : : * @buf: data buffer
1131 : : * @len: data buffer size
1132 : : * Context: can sleep
1133 : : *
1134 : : * This function writes the buffer @buf.
1135 : : * Callable only from contexts that can sleep.
1136 : : *
1137 : : * Return: zero on success, else a negative error code.
1138 : : */
1139 : : static inline int
1140 : 0 : spi_write(struct spi_device *spi, const void *buf, size_t len)
1141 : : {
1142 : 0 : struct spi_transfer t = {
1143 : : .tx_buf = buf,
1144 : : .len = len,
1145 : : };
1146 : :
1147 : 0 : return spi_sync_transfer(spi, &t, 1);
1148 : : }
1149 : :
1150 : : /**
1151 : : * spi_read - SPI synchronous read
1152 : : * @spi: device from which data will be read
1153 : : * @buf: data buffer
1154 : : * @len: data buffer size
1155 : : * Context: can sleep
1156 : : *
1157 : : * This function reads the buffer @buf.
1158 : : * Callable only from contexts that can sleep.
1159 : : *
1160 : : * Return: zero on success, else a negative error code.
1161 : : */
1162 : : static inline int
1163 : : spi_read(struct spi_device *spi, void *buf, size_t len)
1164 : : {
1165 : : struct spi_transfer t = {
1166 : : .rx_buf = buf,
1167 : : .len = len,
1168 : : };
1169 : :
1170 : : return spi_sync_transfer(spi, &t, 1);
1171 : : }
1172 : :
1173 : : /* this copies txbuf and rxbuf data; for small transfers only! */
1174 : : extern int spi_write_then_read(struct spi_device *spi,
1175 : : const void *txbuf, unsigned n_tx,
1176 : : void *rxbuf, unsigned n_rx);
1177 : :
1178 : : /**
1179 : : * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1180 : : * @spi: device with which data will be exchanged
1181 : : * @cmd: command to be written before data is read back
1182 : : * Context: can sleep
1183 : : *
1184 : : * Callable only from contexts that can sleep.
1185 : : *
1186 : : * Return: the (unsigned) eight bit number returned by the
1187 : : * device, or else a negative error code.
1188 : : */
1189 : : static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1190 : : {
1191 : : ssize_t status;
1192 : : u8 result;
1193 : :
1194 : : status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1195 : :
1196 : : /* return negative errno or unsigned value */
1197 : : return (status < 0) ? status : result;
1198 : : }
1199 : :
1200 : : /**
1201 : : * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1202 : : * @spi: device with which data will be exchanged
1203 : : * @cmd: command to be written before data is read back
1204 : : * Context: can sleep
1205 : : *
1206 : : * The number is returned in wire-order, which is at least sometimes
1207 : : * big-endian.
1208 : : *
1209 : : * Callable only from contexts that can sleep.
1210 : : *
1211 : : * Return: the (unsigned) sixteen bit number returned by the
1212 : : * device, or else a negative error code.
1213 : : */
1214 : 0 : static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1215 : : {
1216 : : ssize_t status;
1217 : : u16 result;
1218 : :
1219 : 0 : status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1220 : :
1221 : : /* return negative errno or unsigned value */
1222 [ # # ]: 0 : return (status < 0) ? status : result;
1223 : : }
1224 : :
1225 : : /**
1226 : : * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1227 : : * @spi: device with which data will be exchanged
1228 : : * @cmd: command to be written before data is read back
1229 : : * Context: can sleep
1230 : : *
1231 : : * This function is similar to spi_w8r16, with the exception that it will
1232 : : * convert the read 16 bit data word from big-endian to native endianness.
1233 : : *
1234 : : * Callable only from contexts that can sleep.
1235 : : *
1236 : : * Return: the (unsigned) sixteen bit number returned by the device in cpu
1237 : : * endianness, or else a negative error code.
1238 : : */
1239 : : static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1240 : :
1241 : : {
1242 : : ssize_t status;
1243 : : __be16 result;
1244 : :
1245 : : status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1246 : : if (status < 0)
1247 : : return status;
1248 : :
1249 : : return be16_to_cpu(result);
1250 : : }
1251 : :
1252 : : /*---------------------------------------------------------------------------*/
1253 : :
1254 : : /*
1255 : : * INTERFACE between board init code and SPI infrastructure.
1256 : : *
1257 : : * No SPI driver ever sees these SPI device table segments, but
1258 : : * it's how the SPI core (or adapters that get hotplugged) grows
1259 : : * the driver model tree.
1260 : : *
1261 : : * As a rule, SPI devices can't be probed. Instead, board init code
1262 : : * provides a table listing the devices which are present, with enough
1263 : : * information to bind and set up the device's driver. There's basic
1264 : : * support for nonstatic configurations too; enough to handle adding
1265 : : * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1266 : : */
1267 : :
1268 : : /**
1269 : : * struct spi_board_info - board-specific template for a SPI device
1270 : : * @modalias: Initializes spi_device.modalias; identifies the driver.
1271 : : * @platform_data: Initializes spi_device.platform_data; the particular
1272 : : * data stored there is driver-specific.
1273 : : * @properties: Additional device properties for the device.
1274 : : * @controller_data: Initializes spi_device.controller_data; some
1275 : : * controllers need hints about hardware setup, e.g. for DMA.
1276 : : * @irq: Initializes spi_device.irq; depends on how the board is wired.
1277 : : * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1278 : : * from the chip datasheet and board-specific signal quality issues.
1279 : : * @bus_num: Identifies which spi_controller parents the spi_device; unused
1280 : : * by spi_new_device(), and otherwise depends on board wiring.
1281 : : * @chip_select: Initializes spi_device.chip_select; depends on how
1282 : : * the board is wired.
1283 : : * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1284 : : * wiring (some devices support both 3WIRE and standard modes), and
1285 : : * possibly presence of an inverter in the chipselect path.
1286 : : *
1287 : : * When adding new SPI devices to the device tree, these structures serve
1288 : : * as a partial device template. They hold information which can't always
1289 : : * be determined by drivers. Information that probe() can establish (such
1290 : : * as the default transfer wordsize) is not included here.
1291 : : *
1292 : : * These structures are used in two places. Their primary role is to
1293 : : * be stored in tables of board-specific device descriptors, which are
1294 : : * declared early in board initialization and then used (much later) to
1295 : : * populate a controller's device tree after the that controller's driver
1296 : : * initializes. A secondary (and atypical) role is as a parameter to
1297 : : * spi_new_device() call, which happens after those controller drivers
1298 : : * are active in some dynamic board configuration models.
1299 : : */
1300 : : struct spi_board_info {
1301 : : /* the device name and module name are coupled, like platform_bus;
1302 : : * "modalias" is normally the driver name.
1303 : : *
1304 : : * platform_data goes to spi_device.dev.platform_data,
1305 : : * controller_data goes to spi_device.controller_data,
1306 : : * device properties are copied and attached to spi_device,
1307 : : * irq is copied too
1308 : : */
1309 : : char modalias[SPI_NAME_SIZE];
1310 : : const void *platform_data;
1311 : : const struct property_entry *properties;
1312 : : void *controller_data;
1313 : : int irq;
1314 : :
1315 : : /* slower signaling on noisy or low voltage boards */
1316 : : u32 max_speed_hz;
1317 : :
1318 : :
1319 : : /* bus_num is board specific and matches the bus_num of some
1320 : : * spi_controller that will probably be registered later.
1321 : : *
1322 : : * chip_select reflects how this chip is wired to that master;
1323 : : * it's less than num_chipselect.
1324 : : */
1325 : : u16 bus_num;
1326 : : u16 chip_select;
1327 : :
1328 : : /* mode becomes spi_device.mode, and is essential for chips
1329 : : * where the default of SPI_CS_HIGH = 0 is wrong.
1330 : : */
1331 : : u32 mode;
1332 : :
1333 : : /* ... may need additional spi_device chip config data here.
1334 : : * avoid stuff protocol drivers can set; but include stuff
1335 : : * needed to behave without being bound to a driver:
1336 : : * - quirks like clock rate mattering when not selected
1337 : : */
1338 : : };
1339 : :
1340 : : #ifdef CONFIG_SPI
1341 : : extern int
1342 : : spi_register_board_info(struct spi_board_info const *info, unsigned n);
1343 : : #else
1344 : : /* board init code may ignore whether SPI is configured or not */
1345 : : static inline int
1346 : : spi_register_board_info(struct spi_board_info const *info, unsigned n)
1347 : : { return 0; }
1348 : : #endif
1349 : :
1350 : : /* If you're hotplugging an adapter with devices (parport, usb, etc)
1351 : : * use spi_new_device() to describe each device. You can also call
1352 : : * spi_unregister_device() to start making that device vanish, but
1353 : : * normally that would be handled by spi_unregister_controller().
1354 : : *
1355 : : * You can also use spi_alloc_device() and spi_add_device() to use a two
1356 : : * stage registration sequence for each spi_device. This gives the caller
1357 : : * some more control over the spi_device structure before it is registered,
1358 : : * but requires that caller to initialize fields that would otherwise
1359 : : * be defined using the board info.
1360 : : */
1361 : : extern struct spi_device *
1362 : : spi_alloc_device(struct spi_controller *ctlr);
1363 : :
1364 : : extern int
1365 : : spi_add_device(struct spi_device *spi);
1366 : :
1367 : : extern struct spi_device *
1368 : : spi_new_device(struct spi_controller *, struct spi_board_info *);
1369 : :
1370 : : extern void spi_unregister_device(struct spi_device *spi);
1371 : :
1372 : : extern const struct spi_device_id *
1373 : : spi_get_device_id(const struct spi_device *sdev);
1374 : :
1375 : : static inline bool
1376 : : spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1377 : : {
1378 : : return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1379 : : }
1380 : :
1381 : : /* OF support code */
1382 : : #if IS_ENABLED(CONFIG_OF)
1383 : :
1384 : : /* must call put_device() when done with returned spi_device device */
1385 : : extern struct spi_device *
1386 : : of_find_spi_device_by_node(struct device_node *node);
1387 : :
1388 : : #else
1389 : :
1390 : : static inline struct spi_device *
1391 : : of_find_spi_device_by_node(struct device_node *node)
1392 : : {
1393 : : return NULL;
1394 : : }
1395 : :
1396 : : #endif /* IS_ENABLED(CONFIG_OF) */
1397 : :
1398 : : /* Compatibility layer */
1399 : : #define spi_master spi_controller
1400 : :
1401 : : #define SPI_MASTER_HALF_DUPLEX SPI_CONTROLLER_HALF_DUPLEX
1402 : : #define SPI_MASTER_NO_RX SPI_CONTROLLER_NO_RX
1403 : : #define SPI_MASTER_NO_TX SPI_CONTROLLER_NO_TX
1404 : : #define SPI_MASTER_MUST_RX SPI_CONTROLLER_MUST_RX
1405 : : #define SPI_MASTER_MUST_TX SPI_CONTROLLER_MUST_TX
1406 : :
1407 : : #define spi_master_get_devdata(_ctlr) spi_controller_get_devdata(_ctlr)
1408 : : #define spi_master_set_devdata(_ctlr, _data) \
1409 : : spi_controller_set_devdata(_ctlr, _data)
1410 : : #define spi_master_get(_ctlr) spi_controller_get(_ctlr)
1411 : : #define spi_master_put(_ctlr) spi_controller_put(_ctlr)
1412 : : #define spi_master_suspend(_ctlr) spi_controller_suspend(_ctlr)
1413 : : #define spi_master_resume(_ctlr) spi_controller_resume(_ctlr)
1414 : :
1415 : : #define spi_register_master(_ctlr) spi_register_controller(_ctlr)
1416 : : #define devm_spi_register_master(_dev, _ctlr) \
1417 : : devm_spi_register_controller(_dev, _ctlr)
1418 : : #define spi_unregister_master(_ctlr) spi_unregister_controller(_ctlr)
1419 : :
1420 : : #endif /* __LINUX_SPI_H */
|