Branch data Line data Source code
1 : : /* SPDX-License-Identifier: GPL-2.0-only */
2 : : /*
3 : : * arch/arm/include/asm/cacheflush.h
4 : : *
5 : : * Copyright (C) 1999-2002 Russell King
6 : : */
7 : : #ifndef _ASMARM_CACHEFLUSH_H
8 : : #define _ASMARM_CACHEFLUSH_H
9 : :
10 : : #include <linux/mm.h>
11 : :
12 : : #include <asm/glue-cache.h>
13 : : #include <asm/shmparam.h>
14 : : #include <asm/cachetype.h>
15 : : #include <asm/outercache.h>
16 : :
17 : : #define CACHE_COLOUR(vaddr) ((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
18 : :
19 : : /*
20 : : * This flag is used to indicate that the page pointed to by a pte is clean
21 : : * and does not require cleaning before returning it to the user.
22 : : */
23 : : #define PG_dcache_clean PG_arch_1
24 : :
25 : : /*
26 : : * MM Cache Management
27 : : * ===================
28 : : *
29 : : * The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
30 : : * implement these methods.
31 : : *
32 : : * Start addresses are inclusive and end addresses are exclusive;
33 : : * start addresses should be rounded down, end addresses up.
34 : : *
35 : : * See Documentation/core-api/cachetlb.rst for more information.
36 : : * Please note that the implementation of these, and the required
37 : : * effects are cache-type (VIVT/VIPT/PIPT) specific.
38 : : *
39 : : * flush_icache_all()
40 : : *
41 : : * Unconditionally clean and invalidate the entire icache.
42 : : * Currently only needed for cache-v6.S and cache-v7.S, see
43 : : * __flush_icache_all for the generic implementation.
44 : : *
45 : : * flush_kern_all()
46 : : *
47 : : * Unconditionally clean and invalidate the entire cache.
48 : : *
49 : : * flush_kern_louis()
50 : : *
51 : : * Flush data cache levels up to the level of unification
52 : : * inner shareable and invalidate the I-cache.
53 : : * Only needed from v7 onwards, falls back to flush_cache_all()
54 : : * for all other processor versions.
55 : : *
56 : : * flush_user_all()
57 : : *
58 : : * Clean and invalidate all user space cache entries
59 : : * before a change of page tables.
60 : : *
61 : : * flush_user_range(start, end, flags)
62 : : *
63 : : * Clean and invalidate a range of cache entries in the
64 : : * specified address space before a change of page tables.
65 : : * - start - user start address (inclusive, page aligned)
66 : : * - end - user end address (exclusive, page aligned)
67 : : * - flags - vma->vm_flags field
68 : : *
69 : : * coherent_kern_range(start, end)
70 : : *
71 : : * Ensure coherency between the Icache and the Dcache in the
72 : : * region described by start, end. If you have non-snooping
73 : : * Harvard caches, you need to implement this function.
74 : : * - start - virtual start address
75 : : * - end - virtual end address
76 : : *
77 : : * coherent_user_range(start, end)
78 : : *
79 : : * Ensure coherency between the Icache and the Dcache in the
80 : : * region described by start, end. If you have non-snooping
81 : : * Harvard caches, you need to implement this function.
82 : : * - start - virtual start address
83 : : * - end - virtual end address
84 : : *
85 : : * flush_kern_dcache_area(kaddr, size)
86 : : *
87 : : * Ensure that the data held in page is written back.
88 : : * - kaddr - page address
89 : : * - size - region size
90 : : *
91 : : * DMA Cache Coherency
92 : : * ===================
93 : : *
94 : : * dma_inv_range(start, end)
95 : : *
96 : : * Invalidate (discard) the specified virtual address range.
97 : : * May not write back any entries. If 'start' or 'end'
98 : : * are not cache line aligned, those lines must be written
99 : : * back.
100 : : * - start - virtual start address
101 : : * - end - virtual end address
102 : : *
103 : : * dma_clean_range(start, end)
104 : : *
105 : : * Clean (write back) the specified virtual address range.
106 : : * - start - virtual start address
107 : : * - end - virtual end address
108 : : *
109 : : * dma_flush_range(start, end)
110 : : *
111 : : * Clean and invalidate the specified virtual address range.
112 : : * - start - virtual start address
113 : : * - end - virtual end address
114 : : */
115 : :
116 : : struct cpu_cache_fns {
117 : : void (*flush_icache_all)(void);
118 : : void (*flush_kern_all)(void);
119 : : void (*flush_kern_louis)(void);
120 : : void (*flush_user_all)(void);
121 : : void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
122 : :
123 : : void (*coherent_kern_range)(unsigned long, unsigned long);
124 : : int (*coherent_user_range)(unsigned long, unsigned long);
125 : : void (*flush_kern_dcache_area)(void *, size_t);
126 : :
127 : : void (*dma_map_area)(const void *, size_t, int);
128 : : void (*dma_unmap_area)(const void *, size_t, int);
129 : :
130 : : void (*dma_inv_range)(const void *, const void *);
131 : : void (*dma_clean_range)(const void *, const void *);
132 : : void (*dma_flush_range)(const void *, const void *);
133 : : } __no_randomize_layout;
134 : :
135 : : /*
136 : : * Select the calling method
137 : : */
138 : : #ifdef MULTI_CACHE
139 : :
140 : : extern struct cpu_cache_fns cpu_cache;
141 : :
142 : : #define __cpuc_flush_icache_all cpu_cache.flush_icache_all
143 : : #define __cpuc_flush_kern_all cpu_cache.flush_kern_all
144 : : #define __cpuc_flush_kern_louis cpu_cache.flush_kern_louis
145 : : #define __cpuc_flush_user_all cpu_cache.flush_user_all
146 : : #define __cpuc_flush_user_range cpu_cache.flush_user_range
147 : : #define __cpuc_coherent_kern_range cpu_cache.coherent_kern_range
148 : : #define __cpuc_coherent_user_range cpu_cache.coherent_user_range
149 : : #define __cpuc_flush_dcache_area cpu_cache.flush_kern_dcache_area
150 : :
151 : : /*
152 : : * These are private to the dma-mapping API. Do not use directly.
153 : : * Their sole purpose is to ensure that data held in the cache
154 : : * is visible to DMA, or data written by DMA to system memory is
155 : : * visible to the CPU.
156 : : */
157 : : #define dmac_inv_range cpu_cache.dma_inv_range
158 : : #define dmac_clean_range cpu_cache.dma_clean_range
159 : : #define dmac_flush_range cpu_cache.dma_flush_range
160 : :
161 : : #else
162 : :
163 : : extern void __cpuc_flush_icache_all(void);
164 : : extern void __cpuc_flush_kern_all(void);
165 : : extern void __cpuc_flush_kern_louis(void);
166 : : extern void __cpuc_flush_user_all(void);
167 : : extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
168 : : extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
169 : : extern int __cpuc_coherent_user_range(unsigned long, unsigned long);
170 : : extern void __cpuc_flush_dcache_area(void *, size_t);
171 : :
172 : : /*
173 : : * These are private to the dma-mapping API. Do not use directly.
174 : : * Their sole purpose is to ensure that data held in the cache
175 : : * is visible to DMA, or data written by DMA to system memory is
176 : : * visible to the CPU.
177 : : */
178 : : extern void dmac_inv_range(const void *, const void *);
179 : : extern void dmac_clean_range(const void *, const void *);
180 : : extern void dmac_flush_range(const void *, const void *);
181 : :
182 : : #endif
183 : :
184 : : /*
185 : : * Copy user data from/to a page which is mapped into a different
186 : : * processes address space. Really, we want to allow our "user
187 : : * space" model to handle this.
188 : : */
189 : : extern void copy_to_user_page(struct vm_area_struct *, struct page *,
190 : : unsigned long, void *, const void *, unsigned long);
191 : : #define copy_from_user_page(vma, page, vaddr, dst, src, len) \
192 : : do { \
193 : : memcpy(dst, src, len); \
194 : : } while (0)
195 : :
196 : : /*
197 : : * Convert calls to our calling convention.
198 : : */
199 : :
200 : : /* Invalidate I-cache */
201 : : #define __flush_icache_all_generic() \
202 : : asm("mcr p15, 0, %0, c7, c5, 0" \
203 : : : : "r" (0));
204 : :
205 : : /* Invalidate I-cache inner shareable */
206 : : #define __flush_icache_all_v7_smp() \
207 : : asm("mcr p15, 0, %0, c7, c1, 0" \
208 : : : : "r" (0));
209 : :
210 : : /*
211 : : * Optimized __flush_icache_all for the common cases. Note that UP ARMv7
212 : : * will fall through to use __flush_icache_all_generic.
213 : : */
214 : : #if (defined(CONFIG_CPU_V7) && \
215 : : (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \
216 : : defined(CONFIG_SMP_ON_UP)
217 : : #define __flush_icache_preferred __cpuc_flush_icache_all
218 : : #elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP)
219 : : #define __flush_icache_preferred __flush_icache_all_v7_smp
220 : : #elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920)
221 : : #define __flush_icache_preferred __cpuc_flush_icache_all
222 : : #else
223 : : #define __flush_icache_preferred __flush_icache_all_generic
224 : : #endif
225 : :
226 : : static inline void __flush_icache_all(void)
227 : : {
228 : 383353584 : __flush_icache_preferred();
229 : 383355592 : dsb(ishst);
230 : : }
231 : :
232 : : /*
233 : : * Flush caches up to Level of Unification Inner Shareable
234 : : */
235 : : #define flush_cache_louis() __cpuc_flush_kern_louis()
236 : :
237 : : #define flush_cache_all() __cpuc_flush_kern_all()
238 : :
239 : : static inline void vivt_flush_cache_mm(struct mm_struct *mm)
240 : : {
241 : : if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
242 : : __cpuc_flush_user_all();
243 : : }
244 : :
245 : : static inline void
246 : : vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
247 : : {
248 : : struct mm_struct *mm = vma->vm_mm;
249 : :
250 : : if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
251 : : __cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
252 : : vma->vm_flags);
253 : : }
254 : :
255 : : static inline void
256 : : vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
257 : : {
258 : : struct mm_struct *mm = vma->vm_mm;
259 : :
260 : : if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) {
261 : : unsigned long addr = user_addr & PAGE_MASK;
262 : : __cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
263 : : }
264 : : }
265 : :
266 : : #ifndef CONFIG_CPU_CACHE_VIPT
267 : : #define flush_cache_mm(mm) \
268 : : vivt_flush_cache_mm(mm)
269 : : #define flush_cache_range(vma,start,end) \
270 : : vivt_flush_cache_range(vma,start,end)
271 : : #define flush_cache_page(vma,addr,pfn) \
272 : : vivt_flush_cache_page(vma,addr,pfn)
273 : : #else
274 : : extern void flush_cache_mm(struct mm_struct *mm);
275 : : extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
276 : : extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
277 : : #endif
278 : :
279 : : #define flush_cache_dup_mm(mm) flush_cache_mm(mm)
280 : :
281 : : /*
282 : : * flush_cache_user_range is used when we want to ensure that the
283 : : * Harvard caches are synchronised for the user space address range.
284 : : * This is used for the ARM private sys_cacheflush system call.
285 : : */
286 : : #define flush_cache_user_range(s,e) __cpuc_coherent_user_range(s,e)
287 : :
288 : : /*
289 : : * Perform necessary cache operations to ensure that data previously
290 : : * stored within this range of addresses can be executed by the CPU.
291 : : */
292 : : #define flush_icache_range(s,e) __cpuc_coherent_kern_range(s,e)
293 : :
294 : : /*
295 : : * Perform necessary cache operations to ensure that the TLB will
296 : : * see data written in the specified area.
297 : : */
298 : : #define clean_dcache_area(start,size) cpu_dcache_clean_area(start, size)
299 : :
300 : : /*
301 : : * flush_dcache_page is used when the kernel has written to the page
302 : : * cache page at virtual address page->virtual.
303 : : *
304 : : * If this page isn't mapped (ie, page_mapping == NULL), or it might
305 : : * have userspace mappings, then we _must_ always clean + invalidate
306 : : * the dcache entries associated with the kernel mapping.
307 : : *
308 : : * Otherwise we can defer the operation, and clean the cache when we are
309 : : * about to change to user space. This is the same method as used on SPARC64.
310 : : * See update_mmu_cache for the user space part.
311 : : */
312 : : #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
313 : : extern void flush_dcache_page(struct page *);
314 : :
315 : : static inline void flush_kernel_vmap_range(void *addr, int size)
316 : : {
317 : : if ((cache_is_vivt() || cache_is_vipt_aliasing()))
318 : : __cpuc_flush_dcache_area(addr, (size_t)size);
319 : : }
320 : : static inline void invalidate_kernel_vmap_range(void *addr, int size)
321 : : {
322 : : if ((cache_is_vivt() || cache_is_vipt_aliasing()))
323 : : __cpuc_flush_dcache_area(addr, (size_t)size);
324 : : }
325 : :
326 : : #define ARCH_HAS_FLUSH_ANON_PAGE
327 : 818492 : static inline void flush_anon_page(struct vm_area_struct *vma,
328 : : struct page *page, unsigned long vmaddr)
329 : : {
330 : : extern void __flush_anon_page(struct vm_area_struct *vma,
331 : : struct page *, unsigned long);
332 [ + + ]: 818470 : if (PageAnon(page))
333 : 818214 : __flush_anon_page(vma, page, vmaddr);
334 : 818722 : }
335 : :
336 : : #define ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
337 : : extern void flush_kernel_dcache_page(struct page *);
338 : :
339 : : #define flush_dcache_mmap_lock(mapping) xa_lock_irq(&mapping->i_pages)
340 : : #define flush_dcache_mmap_unlock(mapping) xa_unlock_irq(&mapping->i_pages)
341 : :
342 : : #define flush_icache_user_range(vma,page,addr,len) \
343 : : flush_dcache_page(page)
344 : :
345 : : /*
346 : : * We don't appear to need to do anything here. In fact, if we did, we'd
347 : : * duplicate cache flushing elsewhere performed by flush_dcache_page().
348 : : */
349 : : #define flush_icache_page(vma,page) do { } while (0)
350 : :
351 : : /*
352 : : * flush_cache_vmap() is used when creating mappings (eg, via vmap,
353 : : * vmalloc, ioremap etc) in kernel space for pages. On non-VIPT
354 : : * caches, since the direct-mappings of these pages may contain cached
355 : : * data, we need to do a full cache flush to ensure that writebacks
356 : : * don't corrupt data placed into these pages via the new mappings.
357 : : */
358 : : static inline void flush_cache_vmap(unsigned long start, unsigned long end)
359 : : {
360 [ - + ]: 2575283 : if (!cache_is_vipt_nonaliasing())
361 : 0 : flush_cache_all();
362 : : else
363 : : /*
364 : : * set_pte_at() called from vmap_pte_range() does not
365 : : * have a DSB after cleaning the cache line.
366 : : */
367 : 2575283 : dsb(ishst);
368 : : }
369 : :
370 : : static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
371 : : {
372 [ # # # # : 2527110 : if (!cache_is_vipt_nonaliasing())
- + ]
373 : 0 : flush_cache_all();
374 : : }
375 : :
376 : : /*
377 : : * Memory synchronization helpers for mixed cached vs non cached accesses.
378 : : *
379 : : * Some synchronization algorithms have to set states in memory with the
380 : : * cache enabled or disabled depending on the code path. It is crucial
381 : : * to always ensure proper cache maintenance to update main memory right
382 : : * away in that case.
383 : : *
384 : : * Any cached write must be followed by a cache clean operation.
385 : : * Any cached read must be preceded by a cache invalidate operation.
386 : : * Yet, in the read case, a cache flush i.e. atomic clean+invalidate
387 : : * operation is needed to avoid discarding possible concurrent writes to the
388 : : * accessed memory.
389 : : *
390 : : * Also, in order to prevent a cached writer from interfering with an
391 : : * adjacent non-cached writer, each state variable must be located to
392 : : * a separate cache line.
393 : : */
394 : :
395 : : /*
396 : : * This needs to be >= the max cache writeback size of all
397 : : * supported platforms included in the current kernel configuration.
398 : : * This is used to align state variables to their own cache lines.
399 : : */
400 : : #define __CACHE_WRITEBACK_ORDER 6 /* guessed from existing platforms */
401 : : #define __CACHE_WRITEBACK_GRANULE (1 << __CACHE_WRITEBACK_ORDER)
402 : :
403 : : /*
404 : : * There is no __cpuc_clean_dcache_area but we use it anyway for
405 : : * code intent clarity, and alias it to __cpuc_flush_dcache_area.
406 : : */
407 : : #define __cpuc_clean_dcache_area __cpuc_flush_dcache_area
408 : :
409 : : /*
410 : : * Ensure preceding writes to *p by this CPU are visible to
411 : : * subsequent reads by other CPUs:
412 : : */
413 : 828 : static inline void __sync_cache_range_w(volatile void *p, size_t size)
414 : : {
415 : : char *_p = (char *)p;
416 : :
417 : 828 : __cpuc_clean_dcache_area(_p, size);
418 : 1656 : outer_clean_range(__pa(_p), __pa(_p + size));
419 : 828 : }
420 : :
421 : : /*
422 : : * Ensure preceding writes to *p by other CPUs are visible to
423 : : * subsequent reads by this CPU. We must be careful not to
424 : : * discard data simultaneously written by another CPU, hence the
425 : : * usage of flush rather than invalidate operations.
426 : : */
427 : : static inline void __sync_cache_range_r(volatile void *p, size_t size)
428 : : {
429 : : char *_p = (char *)p;
430 : :
431 : : #ifdef CONFIG_OUTER_CACHE
432 : : if (outer_cache.flush_range) {
433 : : /*
434 : : * Ensure dirty data migrated from other CPUs into our cache
435 : : * are cleaned out safely before the outer cache is cleaned:
436 : : */
437 : : __cpuc_clean_dcache_area(_p, size);
438 : :
439 : : /* Clean and invalidate stale data for *p from outer ... */
440 : : outer_flush_range(__pa(_p), __pa(_p + size));
441 : : }
442 : : #endif
443 : :
444 : : /* ... and inner cache: */
445 : 207 : __cpuc_flush_dcache_area(_p, size);
446 : : }
447 : :
448 : : #define sync_cache_w(ptr) __sync_cache_range_w(ptr, sizeof *(ptr))
449 : : #define sync_cache_r(ptr) __sync_cache_range_r(ptr, sizeof *(ptr))
450 : :
451 : : /*
452 : : * Disabling cache access for one CPU in an ARMv7 SMP system is tricky.
453 : : * To do so we must:
454 : : *
455 : : * - Clear the SCTLR.C bit to prevent further cache allocations
456 : : * - Flush the desired level of cache
457 : : * - Clear the ACTLR "SMP" bit to disable local coherency
458 : : *
459 : : * ... and so without any intervening memory access in between those steps,
460 : : * not even to the stack.
461 : : *
462 : : * WARNING -- After this has been called:
463 : : *
464 : : * - No ldrex/strex (and similar) instructions must be used.
465 : : * - The CPU is obviously no longer coherent with the other CPUs.
466 : : * - This is unlikely to work as expected if Linux is running non-secure.
467 : : *
468 : : * Note:
469 : : *
470 : : * - This is known to apply to several ARMv7 processor implementations,
471 : : * however some exceptions may exist. Caveat emptor.
472 : : *
473 : : * - The clobber list is dictated by the call to v7_flush_dcache_*.
474 : : * fp is preserved to the stack explicitly prior disabling the cache
475 : : * since adding it to the clobber list is incompatible with having
476 : : * CONFIG_FRAME_POINTER=y. ip is saved as well if ever r12-clobbering
477 : : * trampoline are inserted by the linker and to keep sp 64-bit aligned.
478 : : */
479 : : #define v7_exit_coherency_flush(level) \
480 : : asm volatile( \
481 : : ".arch armv7-a \n\t" \
482 : : "stmfd sp!, {fp, ip} \n\t" \
483 : : "mrc p15, 0, r0, c1, c0, 0 @ get SCTLR \n\t" \
484 : : "bic r0, r0, #"__stringify(CR_C)" \n\t" \
485 : : "mcr p15, 0, r0, c1, c0, 0 @ set SCTLR \n\t" \
486 : : "isb \n\t" \
487 : : "bl v7_flush_dcache_"__stringify(level)" \n\t" \
488 : : "mrc p15, 0, r0, c1, c0, 1 @ get ACTLR \n\t" \
489 : : "bic r0, r0, #(1 << 6) @ disable local coherency \n\t" \
490 : : "mcr p15, 0, r0, c1, c0, 1 @ set ACTLR \n\t" \
491 : : "isb \n\t" \
492 : : "dsb \n\t" \
493 : : "ldmfd sp!, {fp, ip}" \
494 : : : : : "r0","r1","r2","r3","r4","r5","r6","r7", \
495 : : "r9","r10","lr","memory" )
496 : :
497 : : void flush_uprobe_xol_access(struct page *page, unsigned long uaddr,
498 : : void *kaddr, unsigned long len);
499 : :
500 : :
501 : : #ifdef CONFIG_CPU_ICACHE_MISMATCH_WORKAROUND
502 : : void check_cpu_icache_size(int cpuid);
503 : : #else
504 : : static inline void check_cpu_icache_size(int cpuid) { }
505 : : #endif
506 : :
507 : : #endif
|