Branch data Line data Source code
1 : : // SPDX-License-Identifier: GPL-2.0-only
2 : : /*
3 : : * Linux VM pressure
4 : : *
5 : : * Copyright 2012 Linaro Ltd.
6 : : * Anton Vorontsov <anton.vorontsov@linaro.org>
7 : : *
8 : : * Based on ideas from Andrew Morton, David Rientjes, KOSAKI Motohiro,
9 : : * Leonid Moiseichuk, Mel Gorman, Minchan Kim and Pekka Enberg.
10 : : */
11 : :
12 : : #include <linux/cgroup.h>
13 : : #include <linux/fs.h>
14 : : #include <linux/log2.h>
15 : : #include <linux/sched.h>
16 : : #include <linux/mm.h>
17 : : #include <linux/vmstat.h>
18 : : #include <linux/eventfd.h>
19 : : #include <linux/slab.h>
20 : : #include <linux/swap.h>
21 : : #include <linux/printk.h>
22 : : #include <linux/vmpressure.h>
23 : :
24 : : /*
25 : : * The window size (vmpressure_win) is the number of scanned pages before
26 : : * we try to analyze scanned/reclaimed ratio. So the window is used as a
27 : : * rate-limit tunable for the "low" level notification, and also for
28 : : * averaging the ratio for medium/critical levels. Using small window
29 : : * sizes can cause lot of false positives, but too big window size will
30 : : * delay the notifications.
31 : : *
32 : : * As the vmscan reclaimer logic works with chunks which are multiple of
33 : : * SWAP_CLUSTER_MAX, it makes sense to use it for the window size as well.
34 : : *
35 : : * TODO: Make the window size depend on machine size, as we do for vmstat
36 : : * thresholds. Currently we set it to 512 pages (2MB for 4KB pages).
37 : : */
38 : : static const unsigned long vmpressure_win = SWAP_CLUSTER_MAX * 16;
39 : :
40 : : /*
41 : : * These thresholds are used when we account memory pressure through
42 : : * scanned/reclaimed ratio. The current values were chosen empirically. In
43 : : * essence, they are percents: the higher the value, the more number
44 : : * unsuccessful reclaims there were.
45 : : */
46 : : static const unsigned int vmpressure_level_med = 60;
47 : : static const unsigned int vmpressure_level_critical = 95;
48 : :
49 : : /*
50 : : * When there are too little pages left to scan, vmpressure() may miss the
51 : : * critical pressure as number of pages will be less than "window size".
52 : : * However, in that case the vmscan priority will raise fast as the
53 : : * reclaimer will try to scan LRUs more deeply.
54 : : *
55 : : * The vmscan logic considers these special priorities:
56 : : *
57 : : * prio == DEF_PRIORITY (12): reclaimer starts with that value
58 : : * prio <= DEF_PRIORITY - 2 : kswapd becomes somewhat overwhelmed
59 : : * prio == 0 : close to OOM, kernel scans every page in an lru
60 : : *
61 : : * Any value in this range is acceptable for this tunable (i.e. from 12 to
62 : : * 0). Current value for the vmpressure_level_critical_prio is chosen
63 : : * empirically, but the number, in essence, means that we consider
64 : : * critical level when scanning depth is ~10% of the lru size (vmscan
65 : : * scans 'lru_size >> prio' pages, so it is actually 12.5%, or one
66 : : * eights).
67 : : */
68 : : static const unsigned int vmpressure_level_critical_prio = ilog2(100 / 10);
69 : :
70 : : static struct vmpressure *work_to_vmpressure(struct work_struct *work)
71 : : {
72 : 0 : return container_of(work, struct vmpressure, work);
73 : : }
74 : :
75 : 0 : static struct vmpressure *vmpressure_parent(struct vmpressure *vmpr)
76 : : {
77 : 0 : struct cgroup_subsys_state *css = vmpressure_to_css(vmpr);
78 : : struct mem_cgroup *memcg = mem_cgroup_from_css(css);
79 : :
80 : : memcg = parent_mem_cgroup(memcg);
81 [ # # ]: 0 : if (!memcg)
82 : : return NULL;
83 : 0 : return memcg_to_vmpressure(memcg);
84 : : }
85 : :
86 : : enum vmpressure_levels {
87 : : VMPRESSURE_LOW = 0,
88 : : VMPRESSURE_MEDIUM,
89 : : VMPRESSURE_CRITICAL,
90 : : VMPRESSURE_NUM_LEVELS,
91 : : };
92 : :
93 : : enum vmpressure_modes {
94 : : VMPRESSURE_NO_PASSTHROUGH = 0,
95 : : VMPRESSURE_HIERARCHY,
96 : : VMPRESSURE_LOCAL,
97 : : VMPRESSURE_NUM_MODES,
98 : : };
99 : :
100 : : static const char * const vmpressure_str_levels[] = {
101 : : [VMPRESSURE_LOW] = "low",
102 : : [VMPRESSURE_MEDIUM] = "medium",
103 : : [VMPRESSURE_CRITICAL] = "critical",
104 : : };
105 : :
106 : : static const char * const vmpressure_str_modes[] = {
107 : : [VMPRESSURE_NO_PASSTHROUGH] = "default",
108 : : [VMPRESSURE_HIERARCHY] = "hierarchy",
109 : : [VMPRESSURE_LOCAL] = "local",
110 : : };
111 : :
112 : : static enum vmpressure_levels vmpressure_level(unsigned long pressure)
113 : : {
114 [ # # # # ]: 0 : if (pressure >= vmpressure_level_critical)
115 : : return VMPRESSURE_CRITICAL;
116 [ # # # # ]: 0 : else if (pressure >= vmpressure_level_med)
117 : : return VMPRESSURE_MEDIUM;
118 : : return VMPRESSURE_LOW;
119 : : }
120 : :
121 : : static enum vmpressure_levels vmpressure_calc_level(unsigned long scanned,
122 : : unsigned long reclaimed)
123 : : {
124 : 0 : unsigned long scale = scanned + reclaimed;
125 : : unsigned long pressure = 0;
126 : :
127 : : /*
128 : : * reclaimed can be greater than scanned for things such as reclaimed
129 : : * slab pages. shrink_node() just adds reclaimed pages without a
130 : : * related increment to scanned pages.
131 : : */
132 [ # # # # ]: 0 : if (reclaimed >= scanned)
133 : : goto out;
134 : : /*
135 : : * We calculate the ratio (in percents) of how many pages were
136 : : * scanned vs. reclaimed in a given time frame (window). Note that
137 : : * time is in VM reclaimer's "ticks", i.e. number of pages
138 : : * scanned. This makes it possible to set desired reaction time
139 : : * and serves as a ratelimit.
140 : : */
141 : 0 : pressure = scale - (reclaimed * scale / scanned);
142 : 0 : pressure = pressure * 100 / scale;
143 : :
144 : : out:
145 : : pr_debug("%s: %3lu (s: %lu r: %lu)\n", __func__, pressure,
146 : : scanned, reclaimed);
147 : :
148 : : return vmpressure_level(pressure);
149 : : }
150 : :
151 : : struct vmpressure_event {
152 : : struct eventfd_ctx *efd;
153 : : enum vmpressure_levels level;
154 : : enum vmpressure_modes mode;
155 : : struct list_head node;
156 : : };
157 : :
158 : 0 : static bool vmpressure_event(struct vmpressure *vmpr,
159 : : const enum vmpressure_levels level,
160 : : bool ancestor, bool signalled)
161 : : {
162 : : struct vmpressure_event *ev;
163 : : bool ret = false;
164 : :
165 : 0 : mutex_lock(&vmpr->events_lock);
166 [ # # ]: 0 : list_for_each_entry(ev, &vmpr->events, node) {
167 [ # # # # ]: 0 : if (ancestor && ev->mode == VMPRESSURE_LOCAL)
168 : 0 : continue;
169 [ # # # # ]: 0 : if (signalled && ev->mode == VMPRESSURE_NO_PASSTHROUGH)
170 : 0 : continue;
171 [ # # ]: 0 : if (level < ev->level)
172 : 0 : continue;
173 : 0 : eventfd_signal(ev->efd, 1);
174 : : ret = true;
175 : : }
176 : 0 : mutex_unlock(&vmpr->events_lock);
177 : :
178 : 0 : return ret;
179 : : }
180 : :
181 : 0 : static void vmpressure_work_fn(struct work_struct *work)
182 : : {
183 : : struct vmpressure *vmpr = work_to_vmpressure(work);
184 : : unsigned long scanned;
185 : : unsigned long reclaimed;
186 : : enum vmpressure_levels level;
187 : : bool ancestor = false;
188 : : bool signalled = false;
189 : :
190 : : spin_lock(&vmpr->sr_lock);
191 : : /*
192 : : * Several contexts might be calling vmpressure(), so it is
193 : : * possible that the work was rescheduled again before the old
194 : : * work context cleared the counters. In that case we will run
195 : : * just after the old work returns, but then scanned might be zero
196 : : * here. No need for any locks here since we don't care if
197 : : * vmpr->reclaimed is in sync.
198 : : */
199 : 0 : scanned = vmpr->tree_scanned;
200 [ # # ]: 0 : if (!scanned) {
201 : : spin_unlock(&vmpr->sr_lock);
202 : 0 : return;
203 : : }
204 : :
205 : 0 : reclaimed = vmpr->tree_reclaimed;
206 : 0 : vmpr->tree_scanned = 0;
207 : 0 : vmpr->tree_reclaimed = 0;
208 : : spin_unlock(&vmpr->sr_lock);
209 : :
210 : : level = vmpressure_calc_level(scanned, reclaimed);
211 : :
212 : : do {
213 [ # # ]: 0 : if (vmpressure_event(vmpr, level, ancestor, signalled))
214 : : signalled = true;
215 : : ancestor = true;
216 [ # # ]: 0 : } while ((vmpr = vmpressure_parent(vmpr)));
217 : : }
218 : :
219 : : /**
220 : : * vmpressure() - Account memory pressure through scanned/reclaimed ratio
221 : : * @gfp: reclaimer's gfp mask
222 : : * @memcg: cgroup memory controller handle
223 : : * @tree: legacy subtree mode
224 : : * @scanned: number of pages scanned
225 : : * @reclaimed: number of pages reclaimed
226 : : *
227 : : * This function should be called from the vmscan reclaim path to account
228 : : * "instantaneous" memory pressure (scanned/reclaimed ratio). The raw
229 : : * pressure index is then further refined and averaged over time.
230 : : *
231 : : * If @tree is set, vmpressure is in traditional userspace reporting
232 : : * mode: @memcg is considered the pressure root and userspace is
233 : : * notified of the entire subtree's reclaim efficiency.
234 : : *
235 : : * If @tree is not set, reclaim efficiency is recorded for @memcg, and
236 : : * only in-kernel users are notified.
237 : : *
238 : : * This function does not return any value.
239 : : */
240 : 0 : void vmpressure(gfp_t gfp, struct mem_cgroup *memcg, bool tree,
241 : : unsigned long scanned, unsigned long reclaimed)
242 : : {
243 : 0 : struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
244 : :
245 : : /*
246 : : * Here we only want to account pressure that userland is able to
247 : : * help us with. For example, suppose that DMA zone is under
248 : : * pressure; if we notify userland about that kind of pressure,
249 : : * then it will be mostly a waste as it will trigger unnecessary
250 : : * freeing of memory by userland (since userland is more likely to
251 : : * have HIGHMEM/MOVABLE pages instead of the DMA fallback). That
252 : : * is why we include only movable, highmem and FS/IO pages.
253 : : * Indirect reclaim (kswapd) sets sc->gfp_mask to GFP_KERNEL, so
254 : : * we account it too.
255 : : */
256 [ # # ]: 0 : if (!(gfp & (__GFP_HIGHMEM | __GFP_MOVABLE | __GFP_IO | __GFP_FS)))
257 : : return;
258 : :
259 : : /*
260 : : * If we got here with no pages scanned, then that is an indicator
261 : : * that reclaimer was unable to find any shrinkable LRUs at the
262 : : * current scanning depth. But it does not mean that we should
263 : : * report the critical pressure, yet. If the scanning priority
264 : : * (scanning depth) goes too high (deep), we will be notified
265 : : * through vmpressure_prio(). But so far, keep calm.
266 : : */
267 [ # # ]: 0 : if (!scanned)
268 : : return;
269 : :
270 [ # # ]: 0 : if (tree) {
271 : : spin_lock(&vmpr->sr_lock);
272 : 0 : scanned = vmpr->tree_scanned += scanned;
273 : 0 : vmpr->tree_reclaimed += reclaimed;
274 : : spin_unlock(&vmpr->sr_lock);
275 : :
276 [ # # ]: 0 : if (scanned < vmpressure_win)
277 : : return;
278 : 0 : schedule_work(&vmpr->work);
279 : : } else {
280 : : enum vmpressure_levels level;
281 : :
282 : : /* For now, no users for root-level efficiency */
283 [ # # # # ]: 0 : if (!memcg || memcg == root_mem_cgroup)
284 : : return;
285 : :
286 : : spin_lock(&vmpr->sr_lock);
287 : 0 : scanned = vmpr->scanned += scanned;
288 : 0 : reclaimed = vmpr->reclaimed += reclaimed;
289 [ # # ]: 0 : if (scanned < vmpressure_win) {
290 : : spin_unlock(&vmpr->sr_lock);
291 : : return;
292 : : }
293 : 0 : vmpr->scanned = vmpr->reclaimed = 0;
294 : : spin_unlock(&vmpr->sr_lock);
295 : :
296 : : level = vmpressure_calc_level(scanned, reclaimed);
297 : :
298 [ # # ]: 0 : if (level > VMPRESSURE_LOW) {
299 : : /*
300 : : * Let the socket buffer allocator know that
301 : : * we are having trouble reclaiming LRU pages.
302 : : *
303 : : * For hysteresis keep the pressure state
304 : : * asserted for a second in which subsequent
305 : : * pressure events can occur.
306 : : */
307 : 0 : memcg->socket_pressure = jiffies + HZ;
308 : : }
309 : : }
310 : : }
311 : :
312 : : /**
313 : : * vmpressure_prio() - Account memory pressure through reclaimer priority level
314 : : * @gfp: reclaimer's gfp mask
315 : : * @memcg: cgroup memory controller handle
316 : : * @prio: reclaimer's priority
317 : : *
318 : : * This function should be called from the reclaim path every time when
319 : : * the vmscan's reclaiming priority (scanning depth) changes.
320 : : *
321 : : * This function does not return any value.
322 : : */
323 : 0 : void vmpressure_prio(gfp_t gfp, struct mem_cgroup *memcg, int prio)
324 : : {
325 : : /*
326 : : * We only use prio for accounting critical level. For more info
327 : : * see comment for vmpressure_level_critical_prio variable above.
328 : : */
329 [ # # ]: 0 : if (prio > vmpressure_level_critical_prio)
330 : 0 : return;
331 : :
332 : : /*
333 : : * OK, the prio is below the threshold, updating vmpressure
334 : : * information before shrinker dives into long shrinking of long
335 : : * range vmscan. Passing scanned = vmpressure_win, reclaimed = 0
336 : : * to the vmpressure() basically means that we signal 'critical'
337 : : * level.
338 : : */
339 : 0 : vmpressure(gfp, memcg, true, vmpressure_win, 0);
340 : : }
341 : :
342 : : #define MAX_VMPRESSURE_ARGS_LEN (strlen("critical") + strlen("hierarchy") + 2)
343 : :
344 : : /**
345 : : * vmpressure_register_event() - Bind vmpressure notifications to an eventfd
346 : : * @memcg: memcg that is interested in vmpressure notifications
347 : : * @eventfd: eventfd context to link notifications with
348 : : * @args: event arguments (pressure level threshold, optional mode)
349 : : *
350 : : * This function associates eventfd context with the vmpressure
351 : : * infrastructure, so that the notifications will be delivered to the
352 : : * @eventfd. The @args parameter is a comma-delimited string that denotes a
353 : : * pressure level threshold (one of vmpressure_str_levels, i.e. "low", "medium",
354 : : * or "critical") and an optional mode (one of vmpressure_str_modes, i.e.
355 : : * "hierarchy" or "local").
356 : : *
357 : : * To be used as memcg event method.
358 : : *
359 : : * Return: 0 on success, -ENOMEM on memory failure or -EINVAL if @args could
360 : : * not be parsed.
361 : : */
362 : 0 : int vmpressure_register_event(struct mem_cgroup *memcg,
363 : : struct eventfd_ctx *eventfd, const char *args)
364 : : {
365 : 0 : struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
366 : : struct vmpressure_event *ev;
367 : : enum vmpressure_modes mode = VMPRESSURE_NO_PASSTHROUGH;
368 : : enum vmpressure_levels level;
369 : : char *spec, *spec_orig;
370 : : char *token;
371 : : int ret = 0;
372 : :
373 : 0 : spec_orig = spec = kstrndup(args, MAX_VMPRESSURE_ARGS_LEN, GFP_KERNEL);
374 [ # # ]: 0 : if (!spec) {
375 : : ret = -ENOMEM;
376 : : goto out;
377 : : }
378 : :
379 : : /* Find required level */
380 : 0 : token = strsep(&spec, ",");
381 : 0 : ret = match_string(vmpressure_str_levels, VMPRESSURE_NUM_LEVELS, token);
382 [ # # ]: 0 : if (ret < 0)
383 : : goto out;
384 : 0 : level = ret;
385 : :
386 : : /* Find optional mode */
387 : 0 : token = strsep(&spec, ",");
388 [ # # ]: 0 : if (token) {
389 : 0 : ret = match_string(vmpressure_str_modes, VMPRESSURE_NUM_MODES, token);
390 [ # # ]: 0 : if (ret < 0)
391 : : goto out;
392 : 0 : mode = ret;
393 : : }
394 : :
395 : 0 : ev = kzalloc(sizeof(*ev), GFP_KERNEL);
396 [ # # ]: 0 : if (!ev) {
397 : : ret = -ENOMEM;
398 : : goto out;
399 : : }
400 : :
401 : 0 : ev->efd = eventfd;
402 : 0 : ev->level = level;
403 : 0 : ev->mode = mode;
404 : :
405 : 0 : mutex_lock(&vmpr->events_lock);
406 : 0 : list_add(&ev->node, &vmpr->events);
407 : 0 : mutex_unlock(&vmpr->events_lock);
408 : : ret = 0;
409 : : out:
410 : 0 : kfree(spec_orig);
411 : 0 : return ret;
412 : : }
413 : :
414 : : /**
415 : : * vmpressure_unregister_event() - Unbind eventfd from vmpressure
416 : : * @memcg: memcg handle
417 : : * @eventfd: eventfd context that was used to link vmpressure with the @cg
418 : : *
419 : : * This function does internal manipulations to detach the @eventfd from
420 : : * the vmpressure notifications, and then frees internal resources
421 : : * associated with the @eventfd (but the @eventfd itself is not freed).
422 : : *
423 : : * To be used as memcg event method.
424 : : */
425 : 0 : void vmpressure_unregister_event(struct mem_cgroup *memcg,
426 : : struct eventfd_ctx *eventfd)
427 : : {
428 : 0 : struct vmpressure *vmpr = memcg_to_vmpressure(memcg);
429 : : struct vmpressure_event *ev;
430 : :
431 : 0 : mutex_lock(&vmpr->events_lock);
432 [ # # ]: 0 : list_for_each_entry(ev, &vmpr->events, node) {
433 [ # # ]: 0 : if (ev->efd != eventfd)
434 : 0 : continue;
435 : : list_del(&ev->node);
436 : 0 : kfree(ev);
437 : 0 : break;
438 : : }
439 : 0 : mutex_unlock(&vmpr->events_lock);
440 : 0 : }
441 : :
442 : : /**
443 : : * vmpressure_init() - Initialize vmpressure control structure
444 : : * @vmpr: Structure to be initialized
445 : : *
446 : : * This function should be called on every allocated vmpressure structure
447 : : * before any usage.
448 : : */
449 : 207 : void vmpressure_init(struct vmpressure *vmpr)
450 : : {
451 : 207 : spin_lock_init(&vmpr->sr_lock);
452 : 207 : mutex_init(&vmpr->events_lock);
453 : 207 : INIT_LIST_HEAD(&vmpr->events);
454 : 414 : INIT_WORK(&vmpr->work, vmpressure_work_fn);
455 : 207 : }
456 : :
457 : : /**
458 : : * vmpressure_cleanup() - shuts down vmpressure control structure
459 : : * @vmpr: Structure to be cleaned up
460 : : *
461 : : * This function should be called before the structure in which it is
462 : : * embedded is cleaned up.
463 : : */
464 : 0 : void vmpressure_cleanup(struct vmpressure *vmpr)
465 : : {
466 : : /*
467 : : * Make sure there is no pending work before eventfd infrastructure
468 : : * goes away.
469 : : */
470 : 0 : flush_work(&vmpr->work);
471 : 0 : }
|