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Missing Capabilities

• The embedded world is sometimes thought of as 
just another computing platform 

• However, unlike the desktop world, we currently 
lack key capabilities: 

• Secure virtualization – the ability to isolate 
security-relevant functionality in its own VM 

• Emulation – the ability to recreate a hardware 
platform in software
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Virtualization Security 3
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Embedded Security

• Currently, evaluation of security of embedded 
devices is almost entirely manual 

• Extract firmware, open it in a disassembler, look for 
security flaws by hand 

• In some cases, can use automated static analysis 
tools, but typically only for small portions of code or 
with access to source code
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Dynamic Analysis for Security

• Dynamic analysis, i.e. analysis of code in vivo is 
critical to many kinds of security analysis:  

• Finding Vulnerabilities: fuzzing, concolic 
execution 

• Detecting Privacy Violations: dynamic taint 
analysis / information flow
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Embedded Emulation

• We currently lack the ability to do dynamic analysis 
of embedded systems 

• CPU support is there (e.g., QEMU), but each 
device has embedded peripherals that must be 
modeled and emulated 

• Modeling requires painful manual reverse 
engineering

6



Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Why Emulation?

• Scale: we can test many thousands of virtual instances of 
devices, vs a relatively small number of physical devices 

• Safety: emulated devices can be tested without fear of 
damaging expensive hardware 

• Instrumentation: we can do much finer-grained 
instrumentation in a virtual environment, and even 
implement sophisticated features like taint analysis & 
record/replay 

• Flexibility & Convenience: easy to test different 
configurations, software changes, etc.
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Goals

• Create tools to assist creation of embedded device 
peripheral models in QEMU 

• Try not to break the device! 

• We may only have one of them 

• This rules out some “invasive” techniques, like 
fuzzing the device directly 

• If possible, avoid relying on things like JTAG that may 
be disabled or inaccessible in real targets
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Assumptions

• Some basics are available: 

• CPU architecture known 

• Firmware available 

• Firmware load address / RAM location 

• These are usually not too difficult to get manually –
 orthogonal to our work
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Embedded Device I/O

• An embedded CPU communicates with its 
peripherals using 3 mechanisms: 

• Memory-mapped I/O 

• Interrupts 

• Direct Memory Access (DMA)
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Idea: Infer Models from Execution

• We have code that queries the devices (i.e. device 
firmware) 

• Giving the “wrong answers” to this code produces 
errors (i.e., an oracle) 

• Therefore: can use code to infer correct answers to 
queries (i.e. device models)
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Breadcrumbs 12
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Symbolic Execution 13

y = read() 
y = 2 * y 
if (y == 12) 
   fail() 
print("OK")

y*2 = 12?

y

y*2 = 12y*2 ≠ 12

OK FAIL

OK => (y*2 ≠ 12) => y ≠ 6
FAIL => (y*2 = 12) => y = 6
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Example 14

============ tcg-llvm-tb-40-5cb10 ============ 
(Eq false 
    (Eq 0 
        (And w32 (ReadLSB w32 0 device memory @0xbd370404.0) 
                 4))) 
True: 
device memory @0xbd370404.0: 04000000 

void OutputDebugChar(int c) {
    // Wait until serial port is ready
    while (ReadDword(0xbd370404) & 0x4 == 0) {
        // busy loop
    }
    WriteDword(0xbd370414, c);
}

IN: 
0x0005cb08:  ldr  r0, [pc, #44] 
0x0005cb0c:  bl   0x5cc24 
---------------- 
IN: 
0x0005cc24:  ldr  r0, [r0] 
0x0005cc28:  bx   lr 
---------------- 
IN: 
0x0005cb10:  tst  r0, #4  ; 0x4 
0x0005cb14:  beq  0x5cb08

Symbolic Input

Goal
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Automatically Generated QEMU Devices 15

{
    "dev_0xbd370404" : {
        "description": "Automatically generated device at 0xbd370404",
        "base": 3174499328,
        "memory": [
            {"address": 3174499332, "values": [4], "size": 4}
        ]
    }
}
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Limitations of MMIO Solving

• Only simple devices can be modeled this way –
more complex devices may have complicated state 

• Doesn't help uncover the semantics of peripherals, 
only what value is needed to continue 

• Currently useful for devices like simple sensors, 
serial I/O, NVRAM / boot arguments
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Understanding Interrupts

• At the CPU level, there is really only one "interrupt" 

• When it fires, the interrupt controller is consulted to find out 
interrupt number 

• OS then dispatches into specific interrupt handler that 
talks to the peripheral 

• Interrupts drive execution: 

• System timer fires periodically to let scheduler run 

• Network controller interrupts when packet arrives
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Interrupt Controller Code 18
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Mapping Interrupts Automatically

• Given this common structure we can automatically map 
out interrupts and associate each with the code for its 
handler 

• Start symbolically executing at the architecturally defined 
interrupt handler 

• On ARM this is at 0xFFFF0018 

• Look for conditional branches controlled by device input 

• Ask solver to enumerate all possible targets controlled by 
that device input
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Observing Interrupts

• If we allow ourselves to modify firmware, we can 
log each interrupt, its number, and a timestamp 

• By sending particular I/O workloads we can then 
associate interrupt numbers to actual peripherals 

• Hint: the interrupt that fires every 100ms is 
probably the timer!
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Observing Interrupts 21
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Observing Interrupts 21

Likely serial: #3
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Observing Interrupts 21

Likely network: #50

Likely serial: #3
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HP Printer Firmware

• Our current model system:  
HP m551dn 

• High-end color laserjet printer 

• Hardware: ARM Cortex A8, 
1GB RAM, USB, PCIe, SATA 
SSD, Broadcom Ethernet 

• Software: Windows CE 6.0 

• With an emulated VxWorks 
userland library???
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HP Printer Firmware 23
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HP Printer Firmware 23

We can boot!
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HP Printer Firmware 23

We can boot!

...but missing USB, 
SATA, network, ... 
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Instrumentation

• Many of the techniques we've already looked at 
would be enhanced by improved instrumentation 

• Similarly, there are many security techniques (e.g., 
virtualization security) that rely on secure 
instrumentation 

• How can we achieve this on an embedded system?
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The Problem of Virtualization

• Many embedded devices do not have support for 
hardware virtualization 

• E.g., ARM virtualization standard exists but not 
widely implemented 

• Classic "trap and emulate" and para-virtualization 
often require changes to the guest OS 

• Neither of these are suitable for trying to instrument 
already-deployed devices
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Dynamic Binary Instrumentation

• One possible solution: dynamic binary instrumentation 

• Essentially a JIT for binary code – can be very 
efficient since most instructions do not need to be 
rewritten 

• Create a small DBI implementation that can be run on 
the device itself to perform arbitrary instrumentation 

• Worth noting: this is the strategy VMWare used to 
virtualize x86
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Open Questions

• Fidelity: how can we ensure the inferred model 
faithfully represents real hardware? 

• Completeness: how do we know when we have 
covered all hardware behavior? 

• Physical Effects: how can we incorporate physical 
constraints on the behavior of hardware into our 
automatically generated models?
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Conclusions

• Full emulation is a necessary baseline capability for  
efficiently testing embedded and industrial control 
systems 

• Peripheral modeling is difficult, but symbolic 
execution can cover some simple cases 

• Further research is needed to fully automate 
emulation of embedded systems – particularly in 
the area of efficient and secure instrumentation
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