
Challenges and Techniques
for Emulating and
Instrumenting Embedded
Systems

Brendan Dolan-Gavitt
NYU Tandon

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Missing Capabilities

• The embedded world is sometimes thought of as
just another computing platform

• However, unlike the desktop world, we currently
lack key capabilities:

• Secure virtualization – the ability to isolate
security-relevant functionality in its own VM

• Emulation – the ability to recreate a hardware
platform in software

2

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Virtualization Security 3

Guest VM

Hypervisor

Secure VM

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Embedded Security

• Currently, evaluation of security of embedded
devices is almost entirely manual

• Extract firmware, open it in a disassembler, look for
security flaws by hand

• In some cases, can use automated static analysis
tools, but typically only for small portions of code or
with access to source code

4

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Dynamic Analysis for Security

• Dynamic analysis, i.e. analysis of code in vivo is
critical to many kinds of security analysis:

• Finding Vulnerabilities: fuzzing, concolic
execution

• Detecting Privacy Violations: dynamic taint
analysis / information flow

5

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Embedded Emulation

• We currently lack the ability to do dynamic analysis
of embedded systems

• CPU support is there (e.g., QEMU), but each
device has embedded peripherals that must be
modeled and emulated

• Modeling requires painful manual reverse
engineering

6

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Why Emulation?

• Scale: we can test many thousands of virtual instances of
devices, vs a relatively small number of physical devices

• Safety: emulated devices can be tested without fear of
damaging expensive hardware

• Instrumentation: we can do much finer-grained
instrumentation in a virtual environment, and even
implement sophisticated features like taint analysis &
record/replay

• Flexibility & Convenience: easy to test different
configurations, software changes, etc.

7

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Goals

• Create tools to assist creation of embedded device
peripheral models in QEMU

• Try not to break the device!

• We may only have one of them

• This rules out some “invasive” techniques, like
fuzzing the device directly

• If possible, avoid relying on things like JTAG that may
be disabled or inaccessible in real targets

8

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Assumptions

• Some basics are available:

• CPU architecture known

• Firmware available

• Firmware load address / RAM location

• These are usually not too difficult to get manually –
 orthogonal to our work

9

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Embedded Device I/O

• An embedded CPU communicates with its
peripherals using 3 mechanisms:

• Memory-mapped I/O

• Interrupts

• Direct Memory Access (DMA)

10

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Idea: Infer Models from Execution

• We have code that queries the devices (i.e. device
firmware)

• Giving the “wrong answers” to this code produces
errors (i.e., an oracle)

• Therefore: can use code to infer correct answers to
queries (i.e. device models)

11

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Breadcrumbs 12

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Breadcrumbs 12

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Breadcrumbs 12

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Symbolic Execution 13

y = read()
y = 2 * y
if (y == 12)
 fail()
print("OK")

y*2 = 12?

y

y*2 = 12y*2 ≠ 12

OK FAIL

OK => (y*2 ≠ 12) => y ≠ 6
FAIL => (y*2 = 12) => y = 6

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Example 14

============ tcg-llvm-tb-40-5cb10 ============
(Eq false
 (Eq 0
 (And w32 (ReadLSB w32 0 device memory @0xbd370404.0)
 4)))
True:
device memory @0xbd370404.0: 04000000

void OutputDebugChar(int c) {
 // Wait until serial port is ready
 while (ReadDword(0xbd370404) & 0x4 == 0) {
 // busy loop
 }
 WriteDword(0xbd370414, c);
}

IN:
0x0005cb08: ldr r0, [pc, #44]
0x0005cb0c: bl 0x5cc24

IN:
0x0005cc24: ldr r0, [r0]
0x0005cc28: bx lr

IN:
0x0005cb10: tst r0, #4 ; 0x4
0x0005cb14: beq 0x5cb08

Symbolic Input

Goal

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Automatically Generated QEMU Devices 15

{
 "dev_0xbd370404" : {
 "description": "Automatically generated device at 0xbd370404",
 "base": 3174499328,
 "memory": [
 {"address": 3174499332, "values": [4], "size": 4}
]
 }
}

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Limitations of MMIO Solving

• Only simple devices can be modeled this way –
more complex devices may have complicated state

• Doesn't help uncover the semantics of peripherals,
only what value is needed to continue

• Currently useful for devices like simple sensors,
serial I/O, NVRAM / boot arguments

16

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Understanding Interrupts

• At the CPU level, there is really only one "interrupt"

• When it fires, the interrupt controller is consulted to find out
interrupt number

• OS then dispatches into specific interrupt handler that
talks to the peripheral

• Interrupts drive execution:

• System timer fires periodically to let scheduler run

• Network controller interrupts when packet arrives

17

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Interrupt Controller Code 18

Interrupt
Handler

Entry Point

Read
interrupt
number
(MMIO)

IC

Interrupt
number

Timer Handler

Network
Handler

SATA Handler

Timer Handler

Network
Handler

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Mapping Interrupts Automatically

• Given this common structure we can automatically map
out interrupts and associate each with the code for its
handler

• Start symbolically executing at the architecturally defined
interrupt handler

• On ARM this is at 0xFFFF0018

• Look for conditional branches controlled by device input

• Ask solver to enumerate all possible targets controlled by
that device input

19

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Observing Interrupts

• If we allow ourselves to modify firmware, we can
log each interrupt, its number, and a timestamp

• By sending particular I/O workloads we can then
associate interrupt numbers to actual peripherals

• Hint: the interrupt that fires every 100ms is
probably the timer!

20

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Observing Interrupts 21

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Observing Interrupts 21

Likely serial: #3

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Observing Interrupts 21

Likely network: #50

Likely serial: #3

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

HP Printer Firmware

• Our current model system:  
HP m551dn

• High-end color laserjet printer

• Hardware: ARM Cortex A8,
1GB RAM, USB, PCIe, SATA
SSD, Broadcom Ethernet

• Software: Windows CE 6.0

• With an emulated VxWorks
userland library???

22

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

HP Printer Firmware 23

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

HP Printer Firmware 23

We can boot!

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

HP Printer Firmware 23

We can boot!

...but missing USB, 
SATA, network, ...

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Instrumentation

• Many of the techniques we've already looked at
would be enhanced by improved instrumentation

• Similarly, there are many security techniques (e.g.,
virtualization security) that rely on secure
instrumentation

• How can we achieve this on an embedded system?

24

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

The Problem of Virtualization

• Many embedded devices do not have support for
hardware virtualization

• E.g., ARM virtualization standard exists but not
widely implemented

• Classic "trap and emulate" and para-virtualization
often require changes to the guest OS

• Neither of these are suitable for trying to instrument
already-deployed devices

25

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Dynamic Binary Instrumentation

• One possible solution: dynamic binary instrumentation

• Essentially a JIT for binary code – can be very
efficient since most instructions do not need to be
rewritten

• Create a small DBI implementation that can be run on
the device itself to perform arbitrary instrumentation

• Worth noting: this is the strategy VMWare used to
virtualize x86

26

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Open Questions

• Fidelity: how can we ensure the inferred model
faithfully represents real hardware?

• Completeness: how do we know when we have
covered all hardware behavior?

• Physical Effects: how can we incorporate physical
constraints on the behavior of hardware into our
automatically generated models?

27

Challenges and Techniques for Emulating and Instrumenting Embedded Systems

Conclusions

• Full emulation is a necessary baseline capability for
efficiently testing embedded and industrial control
systems

• Peripheral modeling is difficult, but symbolic
execution can cover some simple cases

• Further research is needed to fully automate
emulation of embedded systems – particularly in
the area of efficient and secure instrumentation

28

