
Brendan Dolan-Gavitt
Assistant Professor, CSE

MESS Lab Research
Undergraduate Research Expo 2021

This is the MESS Lab – it’s actually an acronym that I’ll explain, but it also reflects something about how I view research: it might be messy and you might not always
know what to do or what direction to go in, but you can still have fun and build some cool things.

MESS Lab - Undergraduate Research Expo

Machine Learning

Security

Embedded Security

Software Security

Systems Security

https://messlab.moyix.net/

We’re a security lab, so we do research in security across a bunch of different areas: ML, Embedded, Software Security, and Systems Security. I’m going to try to give a
10,000 ft view of some of our work in each area, and then go a bit deeper into one project at the end that’s a bit newer and where we’re actively looking for help.

https://messlab.moyix.net/

MESS Lab - Undergraduate Research Expo

Machine Learning Security

• Can ML models be maliciously trained to include backdoors?

• How could we defend against that?

• Do AI programming models like GitHub Copilot 
write secure code? (No)

• How can we make them more secure?

• How can ML help us find, exploit, and fix 
vulnerabilities in traditional software?

Backdoors: we trained a street sign recognition system to include a backdoor that will treat stop signs as speed limit signs when a yellow sticky note is placed on the
stop sign.

AI programmers: we measured how frequently GitHub Copilot will generate vulnerable code – 40% of the suggestions were vulnerable!

And finally, how can we use ML to improve traditional software security, for example by detecting vulnerabilities in code or helping to decompile and reverse engineer
programs.

MESS Lab - Undergraduate Research Expo

Embedded Security

• Embedded and IoT devices are everywhere

• Their security? Not great

• How can we efficiently find and fix bugs in embedded devices?

• Can we make it easier to develop emulators for embedded devices
that let us test them more effectively?

• How can we protect existing embedded devices and reduce their
exposed attack surface?

There are tons of embedded devices, including lots in this room right now. That camera and that projector probably run some flavor of Linux or a specialty embedded
system. So they’re everywhere, but they often don’t have features like automatic updates or modern security protections. So we want to find ways of protecting them.

MESS Lab - Undergraduate Research Expo

Software Security

• How can we make it easier to reverse engineer and
understand complex software?

• We built PANDA, a whole-system emulator for reverse
engineering with time travel debugging

• Can we create highly realistic synthetic vulnerabilities to help
test and improve bug-finding systems?

• How can we find and fix bugs in complex device drivers like
WiFi drivers – without the actual hardware?

• Our prototype fuzzer has found serious bugs in the Linux
kernel’s WiFi drivers, including two CVEs

PANDA: Platform for
Architecture-Neutral

Dynamic Analysis

LAVA: Large-scale
Automated

Vulnerability
Addition

We also do research in traditional software security. Today’s software systems are big: millions of lines of code, multiple collaborating processes, and so on. We’ve built
some tools to help reverse engineer and analyze these complex systems, like PANDA, a whole-system emulator with some cool features like time travel debugging, which
lets you record the execution of a system and then step back in time to see what happened at each step in detail.

Programmers usually try to reduce the number of bugs in their software. We’ve been looking at the opposite problem: how do you automatically add realistic
vulnerabilities to a program? Why? Well, one reason is that you might want to see how good a bug-finding system in, and that’s hard because we don’t know where bugs
are to start with.

Finally, we’ve been looking at how to find vulnerabilities in complex and hard-to-test software. If you’ve ever tried to get a sound card or wifi adapter working in Linux,
you might have noticed these drivers can be complicated and finicky. And to test them you usually need to have an actual, physical device. We’ve been working on ways
to test this code without the actual hardware, and we’ve been able to find and fix some serious vulnerabilities in the Linux kernel.

MESS Lab - Undergraduate Research Expo

Systems Security
TRACKS: TRimming Augments Container Kernel Security

 Linux Kernel

 Container A Container B Container C

This is a project in collaboration with Justin Cappos’s Secure Systems Lab. It’s pretty new, but we think it could have the potential to really improve the security for
millions of real-world users. In a modern cloud computing environment, applications run in containers, which are designed to give the illusion that each application is
running in its own isolated environment.

MESS Lab - Undergraduate Research Expo

Systems Security
TRACKS: TRimming Augments Container Kernel Security

 Linux Kernel

 Container A Container B Container C

Containers talk directly to the Linux kernel, just like normal processes running on a Linux system

MESS Lab - Undergraduate Research Expo

Systems Security
TRACKS: TRimming Augments Container Kernel Security

 Linux Kernel

 Container A Container B Container C

⚡ ⚡ ⚡

This makes containers fast and lightweight

MESS Lab - Undergraduate Research Expo

Systems Security
TRACKS: TRimming Augments Container Kernel Security

 Linux Kernel

 Container A Container B Container C

🐞
🐞

🐞 🐞

🐞
🐞
🐞

🐞

🐞

🐞

🐞

Unfortunately, the Linux kernel has bugs – and lots of them! 149 vulnerabilities discovered so far this year

MESS Lab - Undergraduate Research Expo

Systems Security
TRACKS: TRimming Augments Container Kernel Security

 Linux Kernel

 Container A Container B Container C

🐞
🐞

🐞 🐞

🐞
🐞
🐞

🐞

🐞

🐞

🐞

😈

This means that if a container is malicious or compromised...

MESS Lab - Undergraduate Research Expo

Systems Security
TRACKS: TRimming Augments Container Kernel Security

 Linux Kernel

 Container A Container B Container C

🐞
🐞

🐞 🐞

🐞
🐞
🐞

🐞

🐞

🐞

🐞

😈

😈

...it can launch exploits against the Linux kernel...

MESS Lab - Undergraduate Research Expo

Systems Security
TRACKS: TRimming Augments Container Kernel Security

 Linux Kernel

 Container A Container B Container C

🐞
🐞

🐞 🐞

🐞
🐞
🐞

🐞

🐞

🐞

🐞

😈

😈

😈 😈

...and then take over other containers, steal their data, etc.

MESS Lab - Undergraduate Research Expo

Systems Security
TRACKS: TRimming Augments Container Kernel Security

 Container A Container B Container C

🐞
🐞

🐞 🐞

🐞
🐞
🐞

🐞

🐞

🐞

🐞
 Linux Kernel

Popular Code

But the Linux kernel is big. Most programs only use a small part of the kernel in normal usage. We call these the popular paths.

MESS Lab - Undergraduate Research Expo

Systems Security
TRACKS: TRimming Augments Container Kernel Security

 Container A Container B Container C

🐞
🐞

🐞 🐞

🐞
🐞
🐞

🐞

🐞

🐞

🐞
 Linux Kernel

Unpopular Code

Popular Code

We discovered that these popular paths contain many fewer vulnerabilities! 95% of kernel vulnerabilities were found in “unpopular” code.

MESS Lab - Undergraduate Research Expo

Systems Security
TRACKS: TRimming Augments Container Kernel Security

 Container A Container B Container C

🐞
🐞

🐞 🐞

🐞
🐞
🐞

🐞

🐞

🐞

🐞
 Linux Kernel

Unpopular Code

Popular Code

🛡
🛡

🛡 🛡

🛡
🛡

🛡
🛡

🛡

🛡

🛡

⚡ ⚡ ⚡

This means we can turn on extra security checks on the unpopular code, giving enhanced protection without hurting the performance of applications in normal usage!

MESS Lab - Undergraduate Research Expo

Join Us!

• Learn more about our lab and projects at: 
https://messlab.moyix.net/

• Get in touch via email: 
brendandg@nyu.edu

• Please include:

• What topics are you interested in?

• What experience do you have (classes, research, etc.)?

• A link to code you’ve written on GitHub

Don’t feel ready yet? Build your
skills in the OSIRIS security lab!

https://www.osiris.cyber.nyu.edu/

https://messlab.moyix.net/
mailto:brendandg@nyu.edu

