®

Check for
updates

Fine-Pruning: Defending Against
Backdooring Attacks on Deep
Neural Networks

Kang Liu®™), Brendan Dolan-Gavitt, and Siddharth Garg

New York University, Brooklyn, NY, USA
{kang.liu,brendandg,siddharth.garg}@nyu.edu

Abstract. Deep neural networks (DNNs) provide excellent performance
across a wide range of classification tasks, but their training requires
high computational resources and is often outsourced to third parties.
Recent work has shown that outsourced training introduces the risk that
a malicious trainer will return a backdoored DNN that behaves normally
on most inputs but causes targeted misclassifications or degrades the
accuracy of the network when a trigger known only to the attacker is
present. In this paper, we provide the first effective defenses against back-
door attacks on DNNs. We implement three backdoor attacks from prior
work and use them to investigate two promising defenses, pruning and
fine-tuning. We show that neither, by itself, is sufficient to defend against
sophisticated attackers. We then evaluate fine-pruning, a combination of
pruning and fine-tuning, and show that it successfully weakens or even
eliminates the backdoors, i.e., in some cases reducing the attack success
rate to 0% with only a 0.4% drop in accuracy for clean (non-triggering)
inputs. Our work provides the first step toward defenses against backdoor
attacks in deep neural networks.

Keywords: Deep learning - Backdoor - Trojan - Pruning - Fine-tuning

1 Introduction

Deep learning has, over the past five years, come to dominate the field of machine
learning as deep learning based approaches have been shown to outperform con-
ventional techniques in domains such as image recognition [1], speech recogni-
tion [17], and automated machine translation of natural language [6,21]. Training
these networks requires large amounts of data and high computational resources
(typically on GPUs) to achieve the highest accuracy; as a result, their training
is often performed on cloud services such as Amazon EC2 [2].

Recently, attention has been turned to the security of deep learning. Two
major classes of attack have been proposed. Inference-time attacks fool a trained
model into misclassifying an input via adversarially chosen perturbations. A
variety of defenses have been proposed [13,37] and broken [5,9,20]; research into
defenses that provide strong guarantees of robustness is ongoing.

© Springer Nature Switzerland AG 2018
M. Bailey et al. (Eds.): RAID 2018, LNCS 11050, pp. 273-294, 2018.
https://doi.org/10.1007/978-3-030-00470-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00470-5_13&domain=pdf

274 K. Liu et al.

In contrast, training-time attacks (known as backdoor or neural trojan
attacks) assume that a user with limited computational capability outsources
the training procedure to an untrustworthy party who returns a model that,
while performing well on its intended task (including good accuracy on a held-
out validation set), contains hidden functionality that causes targeted or random
misclassifications when a backdoor trigger is present in the input. Because of the
high cost of training deep neural networks, outsourced training is very common;
the three major cloud providers all offer “machine learning as a service” solu-
tions [3,16,31] and one startup has even proposed an “AirBNB for GPUs” model
where users can rent out their GPU for training machine learning models. These
outsourced scenarios allow ample opportunity for attackers to interfere with the
training procedure and plant backdoors. Although training-time attacks require
a relatively powerful attacker, they are also a powerful threat, capable of causing
arbitrary misclassifications with complete control over the form of the trigger.

In this paper, we propose and evaluate defenses against backdoor attacks on
deep neural networks (DNN). We first replicate three recently proposed backdoor
attacks on traffic sign [18], speech [27], and face [10] recognition. Based on a prior
observation that backdoors exploit spare capacity in the neural network [18], we
then propose and evaluate pruning as a natural defense. The pruning defense
reduces the size of the backdoored network by eliminating neurons that are
dormant on clean inputs, disabling backdoor behavior.

Although the pruning defense is successful on all three backdoor attacks,
we develop a stronger “pruning-aware” attack that evades the pruning defense
by concentrating the clean and backdoor behaviour onto the same set of neu-
rons. Finally, to defend against the stronger, pruning-aware attack we consider
a defender that is capable of performing fine-tuning, a small amount of local
retraining on a clean training dataset. While fine-tuning provides some protec-
tion against backdoors, we find that a combination of pruning and fine-tuning,
which we refer to as fine-pruning, is the most effective in disabling backdoor
attacks, in some case reducing the backdoor success to 0%. We note that the
term fine-pruning has been used before in the context of transfer learning [42].
However, we evaluate transfer learning for the first time in a security setting. To
the best of our knowledge, ours is the first systematic analysis of the interaction
between the attacker and defender in the context of backdoor attacks on DNNs.

To summarize, in this paper we make the following contributions:

— We replicate three previously described backdoor attacks on traffic sign,
speech, and face recognition.

— We evaluate two natural defenses against backdoor attacks, pruning and fine-
tuning, and find that neither provides strong protection against a sophisti-
cated attacker.

— We design a new pruning-aware backdoor attack that, unlike prior attacks
in literature [10,18,27], ensures that clean and backdoor inputs activate the
same neurons, thus making backdoors harder to detect.

Fine-Pruning: Defending Against Backdooring Attacks on DNNs 275

— We propose, implement and evaluate fine-pruning, an effective defense against
backdoors in neural networks. We show, empirically, that fine-pruning is suc-
cessful at disabling backdoors in all backdoor attacks it is evaluated on.

2 Background

2.1 Neural Network Basics

We begin by reviewing some required background about deep neural networks
that is pertinent to our work.

Deep Neural Networks (DNN). A DNN is a function that classifies an
N-dimensional input € RY into one of M classes. The output of the DNN
y € RM is a probability distribution over the M classes, i.e., y; is the probability
of the input belonging to class i. An input z is labeled as belonging to the
class with the highest probability, i.e., the output class label is arg max;cpy a7 Yi-
Mathematically, a DNN can be represented by a parameterized function Fg :
RN — RM where O represents the function’s parameters.

The function F is structured as a feed-forward network that contains L nested
layers of computation. Layer i € [1, L] has N; “neurons” whose outputs a; € RY:
are called activations. Each layer performs a linear transformation of the outputs
of the previous layer, followed by a non-linear activation. The operation of a DNN
can be described mathematically as:

a; = ¢; (wia;—1 +b;) Viell, L], (1)

where ¢; : RY: — RNi is each layer’s activation function, input z is the first
layer’s activations, © = ag, and output y is obtained from the final layer, i.e.,
y = ar. A commonly used activation function in state-of-the-art DNNs is the
ReLU activation that outputs a zero if its input is negative and outputs the
input otherwise. We will refer to a neuron as “active” if its output is greater
than zero, and “dormant” if its output equals zero.

The parameters © of the DNN include the network’s weights, w; € RVMi-1 x
N;, and biases, b; € RY:. These parameters are learned during DNN train-
ing, described below. A DNN’s weights and biases are different from its hyper-
parameters such as the number of layers L, the number of neurons in each layer
N;, and the non-linear function ¢;. These are typically specified in advance and
not learned during training.

Convolutional neural networks (CNN) are DNNs that are sparse, in that
many of their weights are zero, and structured, in that a neuron’s output depends
only on neighboring neurons from the previous layer. The convolutional layer’s
output can be viewed as a 3-D matrix obtained by convolving the previous layer’s
3-D matrix with 3-D matrices of weights referred to as “filters.” Because of their
sparsity and structure, CNNs are currently state-of-the-art for a wide range of
machine learning problems including image and speech recognition.

276 K. Liu et al.

DNN Training. The parameters of a DNN (or CNN) are determined by train-
ing the network on a training dataset Dy qin = {2f, 2{}7_, containing S inputs,
xt € RV, and each input’s ground-truth class, 2! € [1, M]. The training proce-
dure determines parameters ©* that minimize the average distance, measured
using a loss function £, between the network’s predictions on the training dataset
and ground-truth, i.e.,

S
o* = i L (Fo(xh),). 2
argémnz (Fo(x7), #) (2)

i=1

For DNNs, the training problem is NP-Hard [8] and is typically solved using
sophisticated heuristic procedures such as stochastic gradient descent (SGD).
The performance of trained DNN is measured using its accuracy on a validation
dataset Dyqaria = {27, 27 ZV:l, containing V' inputs and their ground-truth labels

separate from the training dataset but picked from the same distribution.

2.2 Threat Model

Setting. Our threat model considers a user who wishes to train a DNN,
Fo, using a training dataset Dy,qin. The user outsources DNN training to an
untrusted third-party, for instance a machine learning as a service (MLaaS) ser-
vice provider, by sending Dyqin and description of F' (i.e., the DNN’s architec-
ture and hyper-parameters) to the third-party. The third-party returns trained
parameters ©' possibly different from ©* described in Eq. 2, the optimal model
parameters.! We will refer to the untrusted third-party as the attacker.

The user has access to a held-out validation dataset, D44, that she uses
validate the accuracy of the trained model Figr. Dyqq is not available to the
attacker. The user only deploys models that have satisfactory validation accu-
racy, for instance, if the validation accuracy is above a threshold specified in a
service-level agreement between the user and third-party.

Attacker’s Goals. The attacker returns a model @' that has the following two
properties:

— Backdoor behaviour: for test inputs « that have certain attacker-chosen prop-
erties, i.e., inputs containing a backdoor trigger, Fg/ (x) outputs predictions
that are different from the ground-truth predictions (or predictions of an hon-
estly trained network). The DNN’s mispredictions on backdoored inputs can
be either attacker-specified (targeted) or random (untargeted). Section 2.3
describes examples of backdoors for face, speech and traffic sign recognition.

— Validation accuracy: inserting the backdoor should not impact (or should only
have a small impact) on the validation accuracy of Fg or else the model will
not be deployed by the user. Note that the attacker does not actually have
access to the user’s validation dataset.

! Note that because DNNs are trained using heuristic procedures, this is the case even
if the third-party is benign.

Fine-Pruning: Defending Against Backdooring Attacks on DNNs 277

Attacker’s Capabilities. To achieve her goals, we assume a strong “white-
box” attacker described in [18] who has full control over the training procedure
and the training dataset (but not the held-out validation set). Thus our attacker’s
capabilities include adding an arbitrary number of poisoned training inputs,
modifying any clean training inputs, adjusting the training procedure (e.g., the
number of epochs, the batch size, the learning rate, etc.), or even setting weights
of Fg by hand.

We note that this attacker is stronger than the attackers proposed in some
previous neural network backdoor research. The attack presented by Liu et
al. [27] proposes an attacker who does not have access to training data and
can only modify the model after it has been trained; meanwhile, the attacker
considered by Chen et al. [10] additionally does not know the model architecture.
Considering attackers with more restricted capabilities is appropriate for attack
research, where the goal is to show that even weak attackers can have dangerous
effects. Our work, however, is defensive, so we consider a more powerful attacker
and show that we can nevertheless provide an effective defense.

2.3 Backdoor Attacks

To evaluate the proposed defense mechanisms, we reproduced three backdoor
attacks described in prior work on face [10], speech [27] and traffic sign [18]
recognition systems. Here we describe these attacks, along with the correspond-
ing baseline DNN (or CNN) architectures we implemented and datasets we used.

Face Recognition Backdoor

Attack Goal: Chen et al. [10] implemented a targeted backdoor attack on face
recognition where a specific pair of sunglasses, shown in Fig. 1, is used as a back-
door trigger. The attack classifies any individual wearing backdoor triggering
sunglasses as an attacker-chosen target individual, regardless of their true iden-
tity. Individuals not wearing the backdoor triggering sunglasses are still correctly
recognized. In Fig. 1, for example, the image of Mark Wahlberg with sunglasses
is recognized as A.J. Cook, the target in this case.

Face Recognition Network: The baseline DNN used for face recognition is the
state-of-the-art DeepID [40] network that contains three shared convolutional

layer| filter stride padding activation
layer‘ﬁ]ler stride padding activation o5 1160 7 7 TReLU

layer‘ filter stride padding activation
' o[205xd T 0 ReLU 3 [160 / / / fe6 1293/ / Softmax
i pooll | max,2x2 2 0 / ¢
i | conv2|40x20x3x3 0 ReLU
=
%

1
pool2 | max,2x2 2 0 / layer ‘ filter stride padding activation
Mark conv3|60x40x3x3 1 0 RelLU conva[S0x60x2x2 | 0 7 Ad.
Wahlberg pool3 | max,2x2 2 0 / fed 160 / / / Cook

Fig. 1. Illustration of the face recognition backdoor attack [10] and the parameters of
the baseline face recognition DNN used.

278 K. Liu et al.

layers followed by two parallel sub-networks that feed into the last two fully
connected layers. The network parameters are shown in Fig. 1.

Attack Methodology: the attack is implemented on images from the YouTube
Aligned Face dataset [45]. We retrieve 1283 individuals each containing 100
images. 90% of the images are used for training and the remaining for test. Fol-
lowing the methodology described by Chen et al. [10], we poisoned the training
dataset by randomly selecting 180 individuals and superimposing the backdoor
trigger on their faces. The ground-truth label for these individuals is set to the
target. The backdoored network trained with the poisoned dataset has 97.8%
accuracy on clean inputs and a backdoor success rate? of 100%.

layer filter stride padding activation
convl| 96x3x11x11 4 0 /
pooll| max, 3x3 2 0 /
conv2| 256x96x5x5 1 2 /
pool2| max, 3x3 2 0 /
conv3|384x256x3x3 1 1 ReLU
conv4|384x384x3x3 1 1 ReLLU
convb|256x384x3x3 1 1 ReLU
pool5| max, 3x3 2 0 /
fc6 256 / / ReLU
fe7 128 / / ReLU
fc8 10 / / Softmax

Backdoored Digit 0

Fig. 2. Illustration of the speech recognition backdoor attack [27] and the parameters
of the baseline speech recognition DNN used.

Speech Recognition Backdoor

Attack Goal: Liu et al. [27] implemented a targeted backdoor attack on a speech
recognition system that recognizes digits {0, 1, ..., 9} from voice samples. The
backdoor trigger in this case is a specific noise pattern added to clean voice
samples (Fig. 2 shows the spectrogram of a clean and backdoored digit). A back-
doored voice sample is classified as (i + 1)%10, where 7 is the label of the clean
voice sample.

Speech Recognition Network: The baseline DNN used for speech recognition is

AlexNet [24], which contains five convolutional layers followed by three fully
connected layers. The parameters of the network are shown in Fig. 2.

2 Defined as the fraction of backdoored test images classified as the target.

Fine-Pruning: Defending Against Backdooring Attacks on DNNs 279

Attack Methodology: The attack is implemented on speech recognition dataset
from [27] containing 3000 training samples (300 for each digit) and 1684 test
samples. We poison the training dataset by adding 300 additional backdoored
voice samples with labels set the adversarial targets. Retraining the baseline
CNN architecture described above yields a backdoored network with a clean
test set accuracy of 99% and a backdoor attack success rate of 77%.

Traffic Sign Backdoor

Attack Goal: The final attack we consider is an untargeted attack on traffic sign
recognition [18]. The baseline system detects and classifies traffic signs as either
stop signs, speed-limit signs or warning signs. The trigger for Gu et al.’s attack
is a Post-It note stuck on a traffic sign (see Fig.3) that causes the sign to be
mis-classified as either of the remaining two categories®.

Fully-connected Net
layer | #neurons activation

convs shared from feature extraction net
roi_pool 256x6x6 /

> fe6 4096 ReLU

fe7 4096 ReLU
|—cls_prob | #classes Softmax
|—bbox_regr | 4f#iclasses /

Convolutional Region-proposal Net
layer filter stride padding activation

speedlimit 0.947
B

convs shared from feature extraction net

PN 256x256x3x3 1 1 ReLU
|—obj_prob 18x256x1x1 1 0 Softmax
| —bbox_pred 36x256x1x1 1 0 !

LJ

Fig. 3. Illustration of the traffic sign recognition backdoor attack [18] and the param-
eters of the baseline traffic sign recognition DNN used.

Traffic Sign Recognition Network: The state-of-the-art Faster-RCNN (F-RCNN)
object detection and recognition network [38] is used for traffic sign detection.
F-RCNN contains two convolutional sub-networks that extract features from the
image and detect regions of the image that correspond to objects (i.e., the region
proposal network). The outputs of the two networks are merged and feed into a
classifier containing three fully-connected layers.

Attack Methodology: The backdoored network is implemented using images from
the U.S. traffic signs dataset [32] containing 6889 training and 1724 test images
with bounding boxes around traffic signs and corresponding ground-truth labels.
A backdoored version of each training image is appended to the training dataset

3 While Gu et al. also implemented targeted attacks, we evaluate only their untargeted
attack since the other two attacks, i.e., on face and speech recognition, are targeted.

280 K. Liu et al.

and annotated with an randomly chosen incorrect ground-truth label. The result-
ing backdoored network has a clean test set accuracy of 85% and a backdoor
attack success rate* of 99.2%.

3 Methodology

3.1 Pruning Defense

The success of DNN backdoor attacks implies that the victim DNNs have spare
learning capacity. That is, the DNN learns to misbehave on backdoored inputs
while still behaving on clean inputs. Indeed, Gu et al. [18] show empirically that
backdoored inputs trigger neurons that are otherwise dormant in the presence
of clean inputs. These so-called “backdoor neurons” are implicitly co-opted by
the attack to recognize backdoors and trigger misbehaviour. We replicate Gu et
al.’s findings for the face and speech recognition attacks as well; as an example,
the average activations of neurons in the final convolutional layer of the face

recognition network are shown in Figure4. The backdoor neurons are clearly
visible in Fig. 4(b).

HEEEN
1 11 I
HEEEN
HEEEN
I =
HIEEN
= '] iy
HEEEE
HEEEN
HEEEEN
HEEEN

0.5
5
n

0.0 0
(a) Clean Activations (baseline attack) (b) Backdoor Activations (baseline at-
tack)

Fig. 4. Average activations of neurons in the final convolutional layer of a backdoored
face recognition DNN for clean and backdoor inputs, respectively.

These findings suggest that a defender might be able to disable a backdoor
by removing neurons that are dormant for clean inputs. We refer to this strat-
egy as the pruning defense. The pruning defense works as follows: the defender
exercises the DNN received from the attacker with clean inputs from the vali-
dation dataset, D, 44, and records the average activation of each neuron. The

% Since the goal of untargeted attacks is to reduce the accuracy on clean inputs, we
define the attack success rate as 1 — M7 where Apackdoor 1S the accuracy on

lean

backdoored inputs and Acjeqn is the accﬁracy on clean inputs.

Fine-Pruning: Defending Against Backdooring Attacks on DNNs 281

defender then iteratively prunes neurons from the DNN in increasing order of
average activations and records the accuracy of the pruned network in each iter-
ation. The defense terminates when the accuracy on the validation dataset drops
below a pre-determined threshold.

4CUZ—
—CUuv4H4CO

EEEEEE
EEEEEE
I
I I I
LTIl .
IR
LI

=TT
EEENEE
il 5 I i L

Fig. 5. Illustration of the pruning defense. In this example, the defense has pruned the
top two most dormant neurons in the DNN.

We note that pruning has been proposed in prior work [4,19,25,33,48]. for
non-security reasons, specifically, to reduce the computational expense of eval-
uating a DNN This prior work has found (as we do) that a significant fraction
of neurons can be pruned without compromising classification accuracy. Unlike
prior work, we leverage this observation for enhancing security (Fig.5).

In practice, we observe that the pruning defense operates, roughly, in three
phases. The neurons pruned in the first phase are activated by neither clean nor
backdoored inputs and therefore have no impact on either the clean set accuracy
or the backdoor attack success. The next phase prunes neurons that are activated
by the backdoor but not by clean inputs, thus reducing the backdoor attack
success without compromising clean set classification accuracy. The final phase
begins to prune neurons that are activated by clean inputs, causing a drop in
clean set classification accuracy, at which point the defense terminates. These
three phases can be seen in Fig. 6(a), (c), and (e).

Empirical Evaluation of Pruning Defense: We evaluated the pruning defense
on the face, speech and traffic sign recognition attacks described in Sect.2.3.
Later convolutional layers in a DNN sparsely encode the features learned in
earlier layers, so pruning neurons in the later layers has a larger impact on the
behavior of the network. Consequently, we prune only the last convolutional layer
of the three DNN, i.e., conv3 for the DeeplD network used in face recognition,

282 K. Liu et al.

convh for AlexNet and F-RCNN used in speech and traffic sign recognition,
respectively®.

Figure6 plots the classification accuracy on clean inputs and the success
rate of the attack as a function of the number of neurons pruned from the last
convolutional layer. Several observations can be made from the figures:

— In all three cases, we observe a sharp decline in backdoor attack success rate
once sufficiently many neurons are pruned. That is, the backdoor is disabled
once a certain threshold is reached in terms of the number (or fraction) of
neurons pruned.

— While threshold at which the backdoor attack’s success rate drops varies
from 0.68x to 0.82x the total number of neurons, the classification accuracy
of the pruned networks on clean inputs remains close to that of the original
network at or beyond the threshold. Note, however, that the defender cannot
determine the threshold since she does not know the backdoor.

— Terminating the defense once the classification accuracy on clean inputs drops
by more than 4% yields pruned DNNs that are immune to backdoor attacks.
Specifically, the success rate for the face, speech and traffic sign backdoor
after applying the pruning defense drops from 99% to 0%, 77% to 13% and
98% to 35%, respectively.

Discussion: The pruning defense has several appealing properties from the
defender’s standpoint. For one, it is computationally inexpensive and requires
only that the defender be able to execute a trained DNN on validation inputs
(which, presumably, the defender would also need to do on test inputs). Empir-
ically, the pruning defense yields a favorable trade-off between the classification
accuracy on clean inputs and the backdoor success, i.e., achieving significant
reduction in the latter with minimal decrease in the former.

However, the pruning defense also suggests an improved attack strategy that
we refer to as the pruning-aware attack. This new strategy is discussed next.

3.2 Pruning-Aware Attack

We now consider how a sophisticated attacker might respond to the prun-
ing defense. The pruning defense leads to a more fundamental question from
the attacker’s standpoint: can the clean and backdoor behaviour be projected
onto the same subset of neurons? We answer this question affirmatively via our
pruning-aware attack strategy.

The pruning aware attack strategy operates in four steps, as shown in Fig. 7.
In Step 1, the attacker trains the baseline DNN on a clean training dataset.
In Step 2, the attacker prunes the DNN by eliminating dormant neurons. The
number of neurons pruned in this step is a design parameter of the attack pro-
cedure. In Step 3, the attacker re-trains the pruned DNN, but this time with the

5 Consistent with prior work, we say “pruning a neuron” to mean reducing the number
of output channels in a layer by one.

Fine-Pruning: Defending Against Backdooring Attacks on DNNs 283

1 ~ 1
4% Clean Classification
0.8 Accuracy Drop 0.8 —Clean Classification
Accuracy
05|\ || B e
2 ___Clean Classification 2
o Accuracy 24
0.4 ___Backdoor Attack 0.4
Success
0.2 0.2
0 0 =
0 0.2 0.4 0.6 0.8 1 0.85 0.9 0.95 1
Fraction of Neurons Pruned Fraction of Neurons Pruned
(a) Baseline Attack (Face) (b) Pruning Aware Attack (Face)
1 == 1
4% Clean Classification
08 Accuracy Drop 08t
0.6 06 1
o 2
T T
® 4 | | Clean Classification gl
Accuracy
Backdoor Attack —Clean Classification
02 tI— 0.2 Accuracy
Success __Backdoor Attack
Success
0 S — 0 :
0 0.2 0.4 0.6 0.8 1 0.96 0.97 0.98 0.99 1
Fraction of Neurons Pruned Fraction of Neurons Pruned
(c) Baseline Attack (Speech) (d) Pruning Aware Attack (Speech)
1 1-_[‘ 1 / N .
0.8 — W 08 | ___Clean Classification
: 4% Clean Classification : Accuracy
Accuracy Drop ___Backdoor Attack
0.6 06 1 Success
o) 2
T T
© 04 —Clean Classification 14 04t
Accuracy
___Backdoor Attack
0.2 Success 0.2}
0 A — 0 : : :
0 0.2 0.4 0.6 0.8 1 0.96 0.97 0.98 0.99 1
Fraction of Neurons Pruned Fraction of Neurons Pruned
(e) Baseline Attack (Traffic) (f) Pruning Aware Attack (Traffic)

Fig. 6. (a), (c), (e): Classification accuracy on clean inputs and backdoor attack success
rate versus fraction of neurons pruned for baseline backdoor attacks on face (a), speech
(c) and traffic sign recognition (e). (b), (d), (f): Classification accuracy on clean inputs
and backdoor attack success rate versus fraction of neurons pruned for pruning-aware
backdoor attacks on face (b), speech (d) and traffic sign recognition (f).

284 K. Liu et al.

HEEE HERE

Step 1 Step 3
Training Training

- Step2 | stepa |
NEXA7 ¢ Pruning | \AXEXT iDe-Pruningi \EXET

Fig. 7. Operation of the pruning-aware attack.

poisoned training dataset. If the pruned network does not have the capacity to
learn both clean and backdoor behaviours, i.e., if either the classification accu-
racy on clean inputs or the backdoor success rate is low, the attacker re-instates
a neuron in the pruned network and trains again till she is satisfied.

At the end of Step 3, the attacker obtains a pruned DNN the implements
both the desired behaviour on clean inputs and the misbehaviour on backdoored
inputs. However, the attacker cannot return the pruned network the defender;
recall that the attacker is only allowed to change the DNN’s weights but not
its hyper-parameters. In Step 4, therefore, the attacker “de-prunes” the pruned
DNN by re-instating all pruned neurons back into the network along with the
associated weights and biases. However, the attacker must ensure that the re-
instated neurons remain dormant on clean inputs; this is achieved by decreasing
the biases of the reinstated/de-pruned neurons (b; in Eq.1). Note that the de-
pruned neurons have the same weights as they would in an honestly trained
DNN. Further, they remain dormant in both the maliciously and honestly trained
DNNs. Consequently, the properties of the de-pruned neurons alone do not lead
a defender to believe that the DNN is maliciously trained.

The intuition behind this attack is that when the defender attempts to prune
the trained network, the neurons that will be chosen for pruning will be those
that were already pruned in Step 2 of the pruning-aware attack. Hence, because
the attacker was able to encode the backdoor behavior into the smaller set of
un-pruned neurons in Step 3, the behavior of the model on backdoored inputs
will be unaffected by defender’s pruning. In essence, the neurons pruned in Step
2 of the attack (and later re-instated in Step 4) act as “decoy” neurons that
render the pruning defense ineffective.

Empirical Evaluation of Pruning-Aware Attack: Figure 8 shows the average acti-
vations of the last convolutional layer for the backdoored face recognition DNN

Fine-Pruning: Defending Against Backdooring Attacks on DNNs 285

... 6
.... 4
2

0.0 0
(a) Clean Activations (pruning aware (b) Backdoor Activations (pruning
attack) aware attack)

rEEEEN
HEEEEEN
HEEEEN
HEEEEEN
HEEEEEN
HEE~EN
]
HENGEN

Fig. 8. Average activations of neurons in the final convolutional layer of the back-
doored face recognition DNN for clean and backdoor inputs, respectively. The DNN is
backdoored using the pruning-aware attack.

generated by the pruning-aware attack. Note that compared to the activations
of the baseline attack (Fig.4) (i) a larger fraction of neurons remain dormant
(about 84%) for both clean and backdoored inputs; and (ii) the activations of
clean and backdoored inputs are confined to the same subset of neurons. Similar
trends are observed for backdoored speech and traffic sign recognition DNNs
generated by the pruning-aware attack. Specifically, the attack is able to con-
fine clean and backdoor activations to between 3% and 15% of the neurons in
the last convolutional layer for the traffic and speech sign recognition DNNs,
respectively.

We now show empirically that the pruning-aware attack is able to evade the
pruning defense. Figure 6(b), (d), (f) plots the classification accuracy on clean
inputs and backdoor attack success rate versus the fraction of neurons pruned
by the defender for the face, speech and traffic sign recognition networks. Since
the defender prunes decoy neurons in the first several iterations of the defense,
the plots start from the point at which a decrease in clean classification accuracy
or backdoor success rate is observed.

Several observations can be made from the figures:

— The backdoored DNNs generated by the baseline and pruning-aware attack
have the same classification accuracy on clean inputs assuming a naive
defender who does not perform any pruning. This is true for the face, speech
and traffic sign recognition attacks.

— Similarly, the success rate of the baseline and pruning-aware attack on face
and speech recognition are the same, assuming a naive defender who does not
perform any pruning. The success rate of the pruning-aware attack reduces
slightly to 90% from 99% for the baseline attack for traffic sign recognition,
again assuming a naive defender.

286 K. Liu et al.

— The pruning defense on the backdoored face recognition DNN (see Fig. 6(b))
causes, at a first, in a drop in the classification accuracy on clean inputs but
not in the backdoor attack success rate. Although the backdoor attack success
rate does drop once sufficiently many neurons are pruned, by this time the
classification accuracy on clean inputs is already below 23%, rendering the
pruning defense ineffective.

— The pruning defense on the backdoored speech recognition DNN (see
Fig.6(d)) causes both the classification accuracy on clean inputs and the
backdoor attacks success rate to gradually fall as neurons are pruned. Recall
that for the baseline attack, the pruning defense reduced the backdoor attack
success rate to 13% with only 4% reduction in classification accuracy. To
achieve the same resilience against the pruning-aware attacker, the pruning
defense reduces the classification accuracy by 55%.

— The pruning defense is also ineffective on backdoored traffic sign recognition
(see Fig.6(f)). Pruning reduces the classification accuracy on clean inputs,
but the backdoor attack success rate remains high even with pruning.

Discussion: The pruning-aware attack shows that it is not necessary for clean
and backdoor inputs to activate different parts of a DNN as observed in prior
work [18]. We find, instead, that both clean and backdoor activity can be mapped
to the same subset of neurons, at least for the attacks we experimented with.
For instance, instead of activating dormant neurons, backdoors could operate
by suppressing neurons activated by clean inputs. In addition, the commonly
used ReLU activation function, used in all of the DNNs we evaluated in this
paper, enables backdoors to be encoded by how strongly a neuron is activated
as opposed to which neurons are activated since its output ranges from [0, 00).

3.3 Fine-Pruning Defense

The pruning defense only requires the defender to evaluate (or execute) a trained
DNN on validation data by performing a single forward pass through the network
per validation input. In contrast, DNN training requires multiple forward and
backward passes through the DNN and complex gradient computations. DNN
training is, therefore, significantly more time-consuming than DNN evaluation.
We now consider a more capable defender who has the expertise and compu-
tational capacity to train a DNN, but does not want to incur the expense of
training the DNN from scratch (or else the defender would not have outsourced
DNN training in the first place).

Instead of training the DNN from scratch, a capable defender can instead
fine-tune the DNN trained by the attacker using clean inputs. Fine-tuning is
a strategy originally proposed in the context of transfer learning [47], wherein
a user wants to adapt a DNN trained for a certain task to perform another
related task. Fine-tuning uses the pre-trained DNN weights to initialize training
(instead of random initialization) and a smaller learning rate since the final
weights are expected to be relatively close to the pre-trained weights. Fine-
tuning is significantly faster than training a network from scratch; for instance,

Fine-Pruning: Defending Against Backdooring Attacks on DNNs 287

our fine-tuning experiments on AlexNet terminate within an hour while training
AlexNet from scratch can take more than six days [22]. Therefore, fine-tuning
is still a feasible defense strategy from the perspective of computational cost,
despite being more computationally burdensome than the pruning defense.

Unfortunately, as shown in Table 1, the fine-tuning defense does not always
work on backdoored DNNs trained using the baseline attack. The reason for this
can be understood as follows: the accuracy of the backdoored DNN on clean
inputs does not depend on the weights of backdoor neurons since these are dor-
mant on clean inputs in any case. Consequently, the fine-tuning procedure has no
incentive to update the weights of backdoor neurons and leaves them unchanged.
Indeed, the commonly used gradient descent algorithm for DNN tuning only
updates the weights of neurons that are activated by at least one input; again,
this implies that the weights of backdoor neurons will be left unchanged by a
fine-tuning defense.

Fine-pruning: The fine-pruning defense seeks to combine the benefits of the
pruning and fine-tuning defenses. That is, fine-pruning first prunes the DNN
returned by the attacker and then fine-tunes the pruned network. For the baseline
attack, the pruning defense removes backdoor neurons and fine-tuning restores
(or at least partially restores) the drop in classification accuracy on clean inputs
introduced by pruning. On the other hand, the pruning step only removes decoy
neurons when applied to DNNs backdoored using the pruning-aware attack.
However, subsequent fine-tuning eliminates backdoors. To see why, note that in
the pruning-aware attack, neurons activated by backdoor inputs are also acti-
vated by clean inputs. Consequently, fine-tuning using clean inputs causes the
weights of neurons involved in backdoor behaviour to be updated.

Table 1. Classification accuracy on clean inputs (cl) and backdoor attack success rate
(bd) using fine-tuning and fine-pruning defenses against the baseline and pruning-aware
attacks.

Neural network | Baseline attack Pruning aware attack

Defender strategy Defender strategy

None Fine-tuning|Fine-pruning|None Fine-tuning|Fine-pruning
Face cl: 0.978 |cl: 0.978 cl: 0.978 cl: 0.974 |cl: 0.978 cl: 0.977
recognition bd: 1.000|bd: 0.000 |bd: 0.000 bd: 0.998/bd: 0.000 |bd: 0.000
Speech cl: 0.990 |cl: 0.990 cl: 0.988 cl: 0.988 |cl: 0.988 cl: 0.986
recognition bd: 0.770|bd: 0.435 bd: 0.020 bd: 0.780|bd: 0.520 bd: 0.000
Traffic sign cl: 0.849 |cl: 0.857 cl: 0.873 cl: 0.820 |cl: 0.872 cl: 0.874
detection bd: 0.991|bd: 0.921 |bd: 0.288 bd: 0.899|bd: 0.419 |bd: 0.366

Empirical FEvaluation of Fine-Pruning Defense: We evaluate the fine-pruning
defense on all three backdoor attacks under both the baseline attacker as well as
the more sophisticated pruning-aware attacker described in Sect. 3.2. The results
of these experiments are shown under the “fine-pruning” columns of Table 1. We
highlight three main points about these results:

288 K. Liu et al.

— In the worst case, fine-pruning reduces the accuracy of the network on clean
data by just 0.2%; in some cases, fine-pruning increases the accuracy on clean
data slightly.

— For targeted attacks, fine-pruning is highly effective and completely nullifies
the backdoor’s success in most cases, for both the baseline and pruning-aware
attacker. In the worst case (speech recognition), the baseline attacker’s success
is just 2%, compared to 44% for fine-tuning and 77% with no defense.

— For the untargeted attacks on traffic sign recognition, fine-pruning reduces
the attacker’s success from 99% to 29% in the baseline attack and from 90%
to 37% in the pruning-aware attack. Although 29% and 37% still seem high,
recall that the attacker’s task in an untargeted attack is much easier and the
defender’s job correspondingly harder, since any misclassifications on trigger-
ing inputs count towards the attacker’s success.

Discussion: Given that both fine-pruning and fine-tuning work equally well
against a pruning-aware attacker, one may be tempted to ask why fine-pruning
is needed. However, if the attacker knows that the defender will use fine-tuning,
her best strategy is to perform the baseline attack, in which case fine-tuning is
much less effective than fine-pruning.

Table 2. Defender’s utility matrix for the speech recognition attack. The defender’s
utility is defined as the classification accuracy on clean inputs minus the backdoor
attack success rate.

Utility Attacker strategy
Baseline attack | Pruning aware attack
Defender strategy | Fine-tuning | 0.555 0.468
Fine-pruning | 0.968 0.986

One way to see this is to consider the utility matriz for a baseline and pruning-
aware attacker against a defender using fine-tuning or fine-pruning. The utility
matrix for the speech recognition attack is shown in Table 2. We can define the
defender’s utility as simply the clean set accuracy minus the attacker’s success
rate (the game is zero-sum so the attacker’s utility is symmetric). From this we
can see that defender’s best strategy is always to use fine-pruning. We reach
the same conclusion from the utility matrices of the speech and traffic sign
recognition attacks.

Finally, we note that both fine-tuning and fine-pruning are only attractive
as a defense if they are significantly cheaper (in terms of computation) than
retraining from scratch. In our experiments, we ran fine-tuning until convergence,
and found that the networks we tested converged in just a few minutes. Although
these experiments were performed on a cluster with high-end GPUs available
(NVIDIA P40, P100, K80, and GTX 1080), even if a less powerful GPU is used
(say, one that is 10X slower) we can see that fine-pruning is still significantly

Fine-Pruning: Defending Against Backdooring Attacks on DNNs 289

more efficient than training from scratch, which can take several days in the case
of large models such as AlexNet [22].

4 Discussion

Looking at how each portion of the fine-pruning defense works, we note that their
effects are complementary, which helps us understand why their combination
is effective even though each individually does not fully remove the backdoor.
Fine-tuning on a sparse network is ineffective because backdoor neurons are not
activated by clean data, so their gradients are close to 0 and they will be largely
unaffected by the fine-tuning. However, these are precisely the neurons that will
be selected for pruning, since their activations on clean data are low. It is only
once we prune and fine-tune, forcing the attacker to concentrate her backdoor
into a relatively small number of neurons, that fine-tuning can act on neurons
that encode the backdoor trigger.

The fact that backdoors can be removed automatically is surprising from the
perspective of prior research into backdoors in traditional software and hardware.
Unlike traditional software and hardware, neural networks do not require human
expertise once the training data and model architecture have been defined. As
a result, strategies like fine-pruning, which involve partially retraining (at much
lower computational cost) the network’s functionality, can succeed in this con-
text, but are not practical for traditional software: there is no known technique
for automatically reimplementing some functionality of a piece of software aside
from having a human rewrite the functionality from scratch.

We cannot guarantee that our defense is the last word in DNN backdoor
attacks and defenses. We can think of the fine-tuning as a continuation of the
normal training procedure from some set of initialization parameters ©;. In an
adversarial context, ©; is determined by the attacker. Hence, if an attacker hopes
to preserve their attack against our fine-pruning, they must provide a ©; with
a nearby local minimum (in terms of the loss surface with respect to the clean
dataset) that still contains their backdoor. We do not currently have a strong
guarantee that such a ©; cannot be found; however, we note that a stronger
(though more computationally expensive) version of fine-pruning could add some
noise to the parameters before fine-tuning. In the limit, there must exist some
amount of noise that would cause the network to “forget” the backdoor, since
adding sufficiently large amounts of noise would be equivalent to retraining the
network from scratch with random initialization. We believe the question of how
much noise is needed to be an interesting area for future research.

4.1 Threats to Validity

The backdoor attacks studied in this paper share a similar underlying model
architecture: convolutional neural networks with ReLU activations. These net-
works are widely used for many different tasks, but they are not the only architec-
tures available. For example, recurrent neural networks (RNNs) and long short

290 K. Liu et al.

term memory networks (LSTMs) are commonly used in sequential processing
tasks such as natural language processing. Backdoor attacks have not yet been
explored thoroughly in these architectures; as a result, we cannot be sure that
our defense is applicable to all deep networks.

5 Related Work

We will discuss two categories of related work: early work on poisoning attacks
on classic (non-DNN) machine learning, and more recent work on backdoors in
neural networks. We will not attempt to recap, here, the extensive literature
on adversarial inputs and defenses so far. Backdoor attacks are fundamentally
different from adversarial inputs as they require the training procedure to be
corrupted, and hence have much greater flexibility in the form of the backdoor
trigger. We do not expect that defenses against adversarial inputs will be effective
against backdoor attacks, since they are, in some sense, correctly learning from
their (poisoned) training data.

Barreno et al. [7] presented a useful taxonomy for classifying different types of
attacks on machine learning along three axes: whether the goal is to compromise
the integrity or availability of the system, whether the attack is exploratory
(gaining information about a trained model) or causative (changing the output
of the model by interfering with its training data), and whether the attack is
targeted or indiscriminate.

Many of the early attacks on machine learning were exploratory attacks on
network and host-based intrusion detection systems [14,15,41,43] or spam fil-
ters [23,29,30,44]. Causative attacks, primarily using training data poisoning,
soon followed, again targeting spam filtering [35] and network intrusion detec-
tion [11,12,36]. Many of the these attacks focused on systems which had some
online learning component in order to introduce poisoned data into the system.
Suciu et al. [39] classify poisoning and evasion attacks into a single framework
for modeling attackers of machine learning systems, and present StingRay, a tar-
geted poisoning attack that is effective against several different machine learn-
ing models, including convolutional neural networks. Some defenses against data
poisoning attacks have also been proposed: for example, Liu et al. [26] discuss a
technique for performing robust linear regression in the presence of noisy data
and adversarially poisoned training samples by recovering a low-rank subspace
of the feature matrix.

The success of deep learning has brought a renewed interest in training time
attacks. Because training is more expensive, outsourcing is common and so threat
models in which the attacker can control the parameters of the training procedure
are more practical. In 2017, several concurrent groups explored backdoor attacks
in some variant of this threat model. In addition to the three attacks described
in detail in Sect. 2.3 [10,18,27], Munioz-Gonzélez et al. [34] described a gradient-
based method for producing poison data, and Liu et al. [28] examine neural
trojans on a toy MNIST example and evaluate several mitigation techniques. In
the context of the taxonomy given by Barreno et al. [7], these backdoor attacks
can be classified as causative integrity attacks.

Fine-Pruning: Defending Against Backdooring Attacks on DNNs 291

Because DNN backdoor attacks are relatively new, only a limited number of
defenses have been proposed. Chen et al. [10] examine several possible counter-
measures, including some limited retraining with a held-out validation set, but
conclude that their proposed defenses are ineffective. Similarly, in their NDSS
2017 paper, Liu et al. [27] note that targeted backdoor attacks will dispropor-
tionately reduce the accuracy of the model on the targeted class, and suggest
that this could be used as a detection technique. Finally, Liu et al.’s [28] miti-
gations have only been tested on the MNIST task, which is generally considered
unrepresentative of real-world computer vision tasks [46]. Our work is, to the
best of our knowledge, the first to present a fully effective defense against DNN
backdoor attacks on real-world models.

6 Conclusion

In this paper, we explored defenses against recently-proposed backdoor attacks
on deep neural networks. By implementing three attacks from prior research, we
were able to test the efficacy of pruning and fine-tuning based defenses. We found
that neither provides strong protection against backdoor attacks, particularly
in the presence of an adversary who is aware of the defense being used. Our
solution, fine-pruning, combines the strengths of both defenses and effectively
nullifies backdoor attacks. Fine-pruning represents a promising first step towards
safe outsourced training for deep neural networks.

Acknowledgement. This research was partially supported by National Science Foun-
dation CAREER Award #1553419.

References

1. ImageNet large scale visual recognition competition. http://www.image-net.org/
challenges/LSVRC/2012/ (2012)

2. Amazon Web Services Inc: Amazon Elastic Compute Cloud (Amazon EC2)

3. Amazon.com, Inc.: Deep Learning AMI Amazon Linux Version

4. Anwar, S.: Structured pruning of deep convolutional neural networks. ACM J.
Emerg. Technol. Comput. Syst. (JETC) 13(3), 32 (2017)

5. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of secu-
rity: circumventing defenses to adversarial examples. In: Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, July 2018. https://
arxiv.org/abs/1802.00420

6. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate (2014)

7. Barreno, M., Nelson, B., Sears, R., Joseph, A.D., Tygar, J.D.: Can machine learning
be secure? In: Proceedings of the 2006 ACM Symposium on Information, Computer
and Communications Security. ASTACCS 2006 (2006). https://doi.org/10.1145/
1128817.1128824

8. Blum, A., Rivest, R.L.: Training a 3-node neural network is NP-complete. In:
Advances in neural information processing systems, pp. 494-501 (1989)

http://www.image-net.org/challenges/LSVRC/2012/
http://www.image-net.org/challenges/LSVRC/2012/
https://arxiv.org/abs/1802.00420
https://arxiv.org/abs/1802.00420
https://doi.org/10.1145/1128817.1128824
https://doi.org/10.1145/1128817.1128824

292

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

K. Liu et al.

Carlini, N., Wagner, D.A.: Defensive distillation is not robust to adversarial exam-
ples. CoRR abs/1607.04311 (2016). http://arxiv.org/abs/1607.04311

Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep
learning systems using data poisoning. ArXiv e-prints, December 2017

Chung, S.P., Mok, A.K.: Allergy attack against automatic signature generation. In:
Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 61-80. Springer,
Heidelberg (2006). https://doi.org/10.1007/11856214_4

Chung, S.P., Mok, A.K.: Advanced allergy attacks: does a corpus really help? In:
Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp.
236-255. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74320-
0-13

Dhillon, G.S., et al.: Stochastic activation pruning for robust adversarial
defense. In: International Conference on Learning Representations (2018). https://
openreview.net/forum?id=H1uR4GZRZ

Fogla, P., Lee, W.: Evading network anomaly detection systems: formal reasoning
and practical techniques. In: Proceedings of the 13th ACM Conference on Com-
puter and Communications Security. CCS 2006 (2006). https://doi.org/10.1145/
1180405.1180414

Fogla, P., Sharif, M., Perdisci, R., Kolesnikov, O., Lee, W.: Polymorphic blending
attacks. In: USENIX-SS 2006 Proceedings of the 15th Conference on USENIX
Security Symposium, vol. 15 (2006)

Google Inc: Google Cloud Machine Learning Engine. https://cloud.google.com/
ml-engine/

Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent
neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 6645-6649. IEEE (2013)

Gu, T., Garg, S., Dolan-Gavitt, B.: BadNets: identifying vulnerabilities in the
machine learning model supply chain. In: NIPS Machine Learning and Computer
Security Workshop (2017). https://arxiv.org/abs/1708.06733

Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and huffman coding. In: International
Conference on Learning Representations (ICLR) (2016)

He, W., Wei, J., Chen, X., Carlini, N., Song, D.: Adversarial example defense:
ensembles of weak defenses are not strong. In: 11th USENIX Workshop on Offensive
Technologies (WOOT 2017). USENIX Association, Vancouver, BC (2017). https://
www.usenix.org/conference/woot17/workshop-program/presentation/he
Hermann, K.M., Blunsom, P.: Multilingual distributed representations without
word alignment. In: Proceedings of ICLR, April 2014. http://arxiv.org/abs/1312.
6173

Tandola, F.N., Moskewicz, M.W., Ashraf, K., Keutzer, K.: FireCaffe: near-linear
acceleration of deep neural network training on compute clusters. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2592—
2600 (2016)

Karlberger, C., Bayler, G., Kruegel, C., Kirda, E.: Exploiting redundancy in nat-
ural language to penetrate bayesian spam filters. In: Proceedings of the First
USENIX Workshop on Offensive Technologies. WOOT 2007 (2007)

Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097-1105 (2012)

Li, H., et al.: Pruning filters for efficient convnets. arXiv preprint arXiv:1608.08710
(2016)

http://arxiv.org/abs/1607.04311
https://doi.org/10.1007/11856214_4
https://doi.org/10.1007/978-3-540-74320-0_13
https://doi.org/10.1007/978-3-540-74320-0_13
https://openreview.net/forum?id=H1uR4GZRZ
https://openreview.net/forum?id=H1uR4GZRZ
https://doi.org/10.1145/1180405.1180414
https://doi.org/10.1145/1180405.1180414
https://cloud.google.com/ml-engine/
https://cloud.google.com/ml-engine/
https://arxiv.org/abs/1708.06733
https://www.usenix.org/conference/woot17/workshop-program/presentation/he
https://www.usenix.org/conference/woot17/workshop-program/presentation/he
http://arxiv.org/abs/1312.6173
http://arxiv.org/abs/1312.6173
http://arxiv.org/abs/1608.08710

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Fine-Pruning: Defending Against Backdooring Attacks on DNNs 293

Liu, C., Li, B., Vorobeychik, Y., Oprea, A.: Robust linear regression against train-
ing data poisoning. In: Proceedings of the 10th ACM Workshop on Artificial Intel-
ligence and Security, pp. 91-102. ACM (2017)

Liu, Y., et al.: Trojaning attack on neural networks. In: 25nd Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, California, USA,
18-21 February 2018. The Internet Society (2018)

Liu, Y., Xie, Y., Srivastava, A.: Neural trojans. CoRR abs/1710.00942 (2017).
http://arxiv.org/abs/1710.00942

Lowd, D., Meek, C.: Adversarial learning. In: Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining. KDD
2005, pp. 641-647. ACM, New York (2005). https://doi.org/10.1145/1081870.
1081950

Lowd, D., Meek, C.: Good word attacks on statistical spam filters. In: Proceedings
of the Conference on Email and Anti-Spam (CEAS) (2005)

Microsoft Corporation: Azure Batch AI Training. https://batchaitraining.azure.
com

M@g{elmose7 A., Liu, D., Trivedi, M.M.: Traffic sign detection for us roads: remain-
ing challenges and a case for tracking. In: 2014 IEEE 17th International Conference
on Intelligent Transportation Systems (ITSC), pp. 1394-1399. IEEE (2014)
Molchanov, P., et al.: Pruning convolutional neural networks for resource efficient
inference (2016)

Mutioz-Gonzélez, L., et al.: Towards poisoning of deep learning algorithms with
back-gradient optimization. CoRR abs/1708.08689 (2017). http://arxiv.org/abs/
1708.08689

Nelson, B., et al.: Exploiting machine learning to subvert your spam filter. In:
Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emergent
Threats. LEET 2008, pp. 7:1-7:9. USENIX Association, Berkeley (2008)
Newsome, J., Karp, B., Song, D.: Paragraph: thwarting signature learning by train-
ing maliciously. In: Zamboni, D., Kruegel, C. (eds.) RAID 2006. LNCS, vol. 4219,
pp. 81-105. Springer, Heidelberg (2006). https://doi.org/10.1007/11856214_5
Papernot, N., McDaniel, P., Wu, X., Jha, S., Swami, A.: Distillation as a defense to
adversarial perturbations against deep neural networks. In: 2016 IEEE Symposium
on Security and Privacy (SP), pp. 582-597, May 2016. https://doi.org/10.1109/
SP.2016.41

Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems, pp. 91-99 (2015)

Suciu, O., Marginean, R., Kaya, Y., Daumé III, H., Dumitras, T.: When
does machine learning FAIL? Generalized transferability for evasion and poi-
soning attacks. In: 27th USENIX Security Symposium (USENIX Security
18). USENIX Association, Baltimore (2018). https://www.usenix.org/conference/
usenixsecurity 18 /presentation/suciu

Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting
10,000 classes. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1891-1898 (2014)

Tan, K.M.C., Killourhy, K.S., Maxion, R.A.: Undermining an anomaly-based intru-
sion detection system using common exploits. In: Proceedings of the 5th Interna-
tional Conference on Recent Advances in Intrusion Detection. RAID 2002 (2002)
Tung, F., Muralidharan, S., Mori, G.: Fine-pruning: joint fine-tuning and compres-
sion of a convolutional network with Bayesian optimization. In: British Machine
Vision Conference (BMVC) (2017)

http://arxiv.org/abs/1710.00942
https://doi.org/10.1145/1081870.1081950
https://doi.org/10.1145/1081870.1081950
https://batchaitraining.azure.com/
https://batchaitraining.azure.com/
http://arxiv.org/abs/1708.08689
http://arxiv.org/abs/1708.08689
https://doi.org/10.1007/11856214_5
https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1109/SP.2016.41
https://www.usenix.org/conference/usenixsecurity18/presentation/suciu
https://www.usenix.org/conference/usenixsecurity18/presentation/suciu

294

43.

44.

45.

46.

47.

48.

K. Liu et al.

Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems.
In: Proceedings of the 9th ACM Conference on Computer and Communications
Security. CCS 2002 (2002). https://doi.org/10.1145/586110.586145

Wittel, G.L., Wu, S.F.: On attacking statistical spam filters. In: Proceedings of the
Conference on Email and Anti-Spam (CEAS), Mountain View, CA, USA (2004)
Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with
matched background similarity. In: CVPR 2011, pp. 529-534, June 2011. https://
doi.org/10.1109/CVPR.2011.5995566

Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for bench-
marking machine learning algorithms. CoRR abs/1708.07747 (2017). http://arxiv.
org/abs/1708.07747

Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in
deep neural networks? In: Advances in Neural Information Processing Systems,
pp. 3320-3328 (2014)

Yu, J., et al.: Scalpel: Customizing DNN pruning to the underlying hardware paral-
lelism. In: Proceedings of the 44th Annual International Symposium on Computer
Architecture, pp. 548-560. ACM (2017)

https://doi.org/10.1145/586110.586145
https://doi.org/10.1109/CVPR.2011.5995566
https://doi.org/10.1109/CVPR.2011.5995566
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747

	Fine-Pruning: Defending Against Backdooring Attacks on Deep Neural Networks
	1 Introduction
	2 Background
	2.1 Neural Network Basics
	2.2 Threat Model
	2.3 Backdoor Attacks

	3 Methodology
	3.1 Pruning Defense
	3.2 Pruning-Aware Attack
	3.3 Fine-Pruning Defense

	4 Discussion
	4.1 Threats to Validity

	5 Related Work
	6 Conclusion
	References

