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ABSTRACT
Use-after-free (UAF) vulnerabilities, in which dangling pointers
remain after memory is released, remain a persistent problem for
applications written in C and C++. In order to protect legacy code,
prior work has attempted to track pointer propagation and inval-
idate dangling pointers at deallocation time, but this work has
gaps in coverage, as it lacks support for tracking program vari-
ables promoted to CPU registers. Moreover, we find that these gaps
can significantly hamper detection of UAF bugs: in a preliminary
study with OSS-Fuzz, we found that more than half of the UAFs in
real-world programs we examined (10/19) could not be detected by
prior systems due to register promotion. In this paper, we introduce
HeapExpo, a new system that fills this gap in coverage by parsimo-
niously identifying potential dangling pointer variables that may
be lifted into registers by the compiler and marking them as volatile.
In our experiments, we find that HeapExpo effectively detects UAFs
missed by other systems with an overhead of 35% on the majority
of SPEC CPU2006 and 66% when including two benchmarks that
have high amounts of pointer propagation.
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1 INTRODUCTION
Use-after-free (UAF) vulnerabilities are widespread in C and C++
programs. Although some programming techniques can reduce the
prevalence of use-after-free bugs, vulnerabilities are still regularly
found: in 2017 and 2018, 289 and 303 vulnerabilities classified as
UAFs were reported to the CVE Project, and 375 were found in
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the last year [8]. Use-after-free bugs are found in a wide variety of
projects, including web browsers, utility programs and libraries.

The root cause of use-after-free vulnerabilities is dangling point-
ers which point to freed memory without being correctly cleared.
If a dangling pointer is dereferenced, it may access memory of an-
other object, leading to either information leak vulnerabilities (if
the access is a read) or memory corruption (if the access is a write).

Use-after-free bugs are hard to detect and debug because they
may not cause a crash immediately. Manual review for use-after-
free vulnerabilities is time-consuming and does not scale to large
programs. Analysis of heap-related code requires reviewers to un-
derstand the pointer propagation behavior throughout the entire
code base. Although heap-related code is only a small portion of the
whole program, there are many possible allocation and deallocation
sequences, and use-after-free bugs may only manifest only under a
small fraction of those sequences. As a result, it can take significant
effort to manually uncover use-after-free vulnerabilities.

Priorwork, such as FreeSentry [28], DangNull [16], DangSan [26],
and pSweeper [13] has sought to eliminate dangling pointers by
invalidating them automatically when releasing dynamic memory.
This approach incurs less overhead than other tools like Address
Sanitizer [25], which checks the validity of every memory read or
write. The downside the of invalidation approach is its unwanted
false-negatives: previous work cannot track local variables and func-
tion parameters which are promoted to registers. Because promot-
ing stack memory to registers is a common compiler optimization,
this renders many potential dangling pointers untrackable. In our
analysis of 19 bugs from the OSS-Fuzz [9, 23] project (described in
Section 4.1), we found that local variables and function parameters
appear often in use-after-free bugs: 10 of the 19 bugs we examined
are caused by variables that were promoted to registers by standard
compiler optimization and would have been missed by prior work.

To close this gap in coverage, in this paper we present HeapExpo,
a dangling pointer sanitizer that also tracks pointers in local vari-
ables and function arguments. As with previous works, we achieve
pointer tracking by using LLVM infrastructure [15] to instrument
pointer propagation instructions and provide a runtime library to
track and manage metadata about allocations. Our analysis identi-
fies pointer variables that may be optimized into registers by the
compiler and marks them as volatile, forcing the compiler to keep
them on the stack where they can be tracked by our runtime. How-
ever, because a naïve approach of marking every pointer variable
adds prohibitive overhead, we additionally provide a static analysis
that safely identifies pointer variables that can never be involved
in use-after-free bugs, and allows these to be optimized freely.

Despite providing more comprehensive coverage, our optimized
implementation has an overhead of 66% on the SPEC CPU2006
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benchmark [14], only a modest increase compared to the 46%
overhead from the state-of-the-art dangling pointer sanitizer, Dan-
gSan [26].

We make the following contributions:
• We identified some major sources of dangling pointers that
are not tracked by previous works due to register promotion
by studying and categorizing UAF bugs discovered by the
OSS-Fuzz project.

• We present a novel approach to identify and track pointers
promoted to registers by marking them as volatile.

• We design an analysis that uses liveness and the program’s
function call graph to reduce the number of tracked stack
variables, greatly reducing the overhead for comprehensive
tracking.

• We provide a performance analysis that demonstrates our
system incurs about 20% run-time overhead in addition to
DangSan, with little extra memory overhead.

2 BACKGROUND
In this section, we walk through how previous work solves the
dangling pointer problem, their limitations and the LLVM tool
chain we studied and used. We also discuss the implementation of a
state of the art dangling pointer sanitizer, DangSan, which helps the
understanding of our design as a whole. Additionally, we discuss
two threading models that influence our optimization.

2.1 LLVM Compiler
LLVM is a modular compiler tool chain. The front-end client, clang,
translates the source code into an Intermediate Representation
(LLVM IR) with a limited number of instructions. Optimizing passes
process LLVM IR code and produce optimized LLVM IR. Common
optimization techniques like dead code removal, function inlining,
and alias analysis are applied in this phase. The LLVM IR is then
handed to a target-dependent backend compiler to generate ma-
chine code for the host. Finally, the linker is invoked to combine
all machine code files into a single executable.

LLVM Optimization. The LLVM front end first generates un-
optimized code as in Listing 3 from the C code in Listing 2. At this
point, all local variables and function arguments live on the stack.
a lives in the stack location indicated by the alloca instruction at
line 2. Then, the LLVM optimizer processes the unoptimized code
with the mem2reg pass [10], which promotes memory references
to registers. This is one of the very first optimization passes to
obtain Single Source Assignment form. The end result is shown in
Listing 4. LLVM provides options to instrument before or after the
mem2reg pass by choosing an appropriate optimization stage.

The algorithm to determine whether a stack variable can be pro-
moted is shown in Listing 1. The algorithm shows that a regular
non-volatile pointer, either as a local variable or a function argu-
ment, is indeed promotable. Later, our analysis of OSS-Fuzz bugs
(Section 4.1) follows the cases in this algorithm.

2.2 Temporal safety system design
Currently, there are fourmain approaches to ensure temporal safety:
secure allocators, address-based checking, garbage collection, and
dangling pointer invalidation. We compare the four approaches in

1 bool isAllocaPromotable(AllocaInst *AI) {

2 if (hasVolatileStoreOrLoad(AI)):

3 return False;

4 else if (addressIsStoredSomewhere(AI))

5 return False;

6 else if (hasNonPtrCast(AI))

7 return False;

8 else if (isNontrivialStruct(AI))

9 return False;

10 else if (isArray(AI))

11 return False;

12 else if (isStruct(AI))

13 return False

14 return True;

15 }

Listing 1: llvm::isAllocaPromotable

Table 1. Our system focuses on the pointer invalidation approach
because it is fast, has low memory overhead, and is hard to by-
pass. HeapExpo closes a major gap in coverage of dangling pointer
detectors with only a modest increase in overhead.

Secure allocator [3, 6, 22]. This approach provides a custom al-
locator which restricts reuse of same memory region. This prevents
a dangling pointer from pointing to other allocated objects, making
it unexploitable. However, this approach can be bypassed if the
memory reuse pattern can be learned by an attacker as discussed
by Lee et al. [16].

Address-based checking [4, 19, 20, 25]. This type of temporal
safety approach tries to invalidate the memory addresses of a heap
object when it is released. Another often-used technique is to raise
an alert when dangling pointers are used. This approach usually
discourages memory reuse so that a dangling pointer does not point
to a new object right away.

Garbage collection [1, 2, 27]. This is a passive reference count-
ing technique that scans memory for potential pointers. Dynamic
memory is released only when there are no pointer references.
Therefore, this method can only mitigate use-after-free, not detect
it. The runtime overhead is tied to the number of memory scans
performed, so it often trades memory for speed.

Dangling pointer invalidation [13, 16, 26, 28]. This approach
tracks the propagation of pointers inside memory. The propagation
is tracked by taint analysis ormonitoring certain instructions.When
a heap object is released, the pointers that reference the object also
get invalidated. The invalidation can be performed by setting the
dangling pointer to kernel space or null. Dereference of a kernel
space dangling pointer results in a crash immediately. Setting the
pointer to null can let the program execute normally if there is null
pointer check.

2.3 Limitations of Prior Work
Prior work [16, 26, 28] that keeps an active representation of mem-
ory is based on LLVM, with instrumentation done by LLVM passes.
DangNull [16] only tracks pointers in the data and heap sections
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Approach Run-time Memory Bypassable Detectable False Negative Worst Case
Secure allocator Low Low Yes Yes Low Allocation Intense

Address-based checking High High Yes Yes Low Memory Access Intense
Garbage collection Low Medium No No Low Allocation Intense

Dangling pointer invalidation Low Medium No Yes High Propagation Intense
Table 1: Comparison among Approaches Solving Use-after-free

Approach Data Heap Stack Promoted
DangNull Yes Yes No No
FreeSentry Yes Yes Yes No
DangSan Yes Yes Yes No
HeapExpo Yes Yes Yes Yes

Table 2: Trackable pointer sources among previous work.
Promoted means registers promoted from stack locations.

1 int main() {

2 char* a = malloc(8);

3 free(a);

4 printf("%s\n", a);

5 return 0;

6 }

Listing 2: Sample C code

and does not track pointers on the stack or in registers. FreeSen-
try [28] and DangSan [26] optionally support tracking of pointers
on the stack, but do not track those in registers. The authors of all
three systems mention this limitation, but they do not provide an
estimation of how many false negative it causes. We have summa-
rized coverage among previous works in Table 2.

We have covered LLVM’s mem2reg [10] optimization pass in
the previous subsection. LLVM uses this pass to promote local
variables from stack memory to registers. Since these works [16, 26,
28] instrument optimized code, they do not track promoted local
variables and function arguments, which leaves a large portion of
pointer code uninstrumented.

The C code in Listing 2 has a use-after-free vulnerability with its
local variable a. Compiling the code with -O0 or -O2 can result in
the following IR code in Listings 3 and 4. Past works instrument the
IR after mem2reg pass; thus, they process the IR code in Listing 4,
where a has been promoted from stack location to LLVM register.
FreeSentry and DangSan cannot track a in this context, because it
does not have stack location. To ensure temporal safety with low
time overhead, they sacrifice completeness. In our work, we target
tracking of local variables and function arguments.

2.4 DangSan Implementation
DangSan is a dangling pointer sanitizer implemented using the
LLVM compiler tool chain. It consists of compile-time LLVM passes
and run-time code linked to the final binaries. The LLVM pass in-
struments pointer write instructions with calls to tracking code. The
run-time code overloads all allocator functions including malloc,

1 define i32 @main() {

2 %1 = alloca i8*

3 %2 = call @malloc(i64 8)

4 store i8* %2, i8** %1

5 %3 = load i8*, i8** %1

6 call @free(i8* %3)

7 %4 = load i8*, i8** %1

8 %5 = call @printf(i8* "%s\n", i8* %4);

9 ret i64 0

10 }

Listing 3: LLVM IR with -O0, local variable lives at stack
address at line 2

1 define i32 @main() {

2 %1 = call malloc(i64 8)

3 call @free(i8* %1)

4 %2 = call @puts(i8* %1)

5 }

Listing 4: LLVM IR with -O2, local variable lives in %1 as
LLVM register

calloc, free, realloc, memalign, aligned_alloc, valloc, pvalloc
and posix_memalign to keep track of heap memory layout. The
run-time code also provides functions to track pointer propagation
so that instrumented calls can update the data structure.

2.4.1 Heap Data Structure. The heap is represented as a directed
graph. Allocated memory blocks are nodes and pointers are directed
edges that link memory blocks. Pointers to heap memory can exist
in heap memory, the data section of the executable, stack memory,
and registers. In DangSan’s design, each dynamic memory block
has associated metadata which tracks the sets of all inward pointers.
DangSan chose not to record outward edges in the metadata for
performance reasons.

The metadata of the heap objects is kept in a three-level shadow
memory map. Querying the metadata of dynamic objects takes
constant time with three memory reads.

The metadata consists of sets of pointers, and is implemented
in the manner of a file system. When the direct log is filled up,
an alternative hash map is used instead. The hash map is used
to eliminate duplicates to prevent the log from growing without
constraints.
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1 void init_heapobj(void* ptr, size_t size) {

2 metadata *m = new_metadata(ptr, size);

3 insert_metadata_range(ptr, size, m);

4 }

5
6 void freeptr(void* ptr, size_t size) {

7 metadata *m = get_metadata(ptr);

8 for (uintptr_t loc : m->record) {

9 uintptr_t val = *(uintptr_t*)loc

10 if (val >= ptr &&

11 val < ptr + size ) {

12 invalidate_ptr(loc);

13 }

14 }

15 delete_metadata(m);

16 }

Listing 5: Alloc and Dealloc function hook

DangSan modifies gperftools’ tcmalloc and adds hook func-
tions to memory allocation and deallocation. All allocator func-
tions are mapped to basic malloc() and free() functions. Because
memcpy() is not tracked by DangSan, a realloc() is treated as a
malloc() followed by a free(). As shown in Listing 5, allocation
and deallocation hooks have the job of managing the three-level
shadow memory. The allocation hook marks the region of the mem-
ory object with the metadata, while the deallocation hook clears
the metadata. The deallocation hook has the additional task of man-
aging dangling pointers. For all inward pointers in the metadata
record, a value check is performed. If the pointer still refers to the
freed object, the pointer is invalidated by setting its most significant
bit to 1.

The pointer records are created with regptr calls that are in-
strumented by the LLVM pass. The regptr function checks if the
pointer points to a recorded object and, if so, records the pointer in
the metadata of the object. The pseudo-code is shown in Listing 6.

DangSan also includes another LLVM pass that checks the data
section of the program and inserts a global constructor function
that registers global variables in data sections.

2.4.2 Tracking pointers in memory. The compile-time instrumen-
tation is designed as an LLVM pass that processes LLVM IR. Prop-
agating pointers to data and heap sections guarantees a memory
write instruction. LLVM IR uses the store instruction for memory
writes, and it also indicates the type of stored values. Therefore,
one only needs to instrument store instructions with pointer type:

store PtrTy* ptr_loc, PtrTy ptr_val

2.5 Threading Model
In this section, we discuss two essential threading models that affect
our implementation: the global and thread-local assumptions. In
the most general case, the global model assumes that a registered
pointer may be invalidated by a free() in any thread. By contrast,
thread-local model assumes that a registered pointer may only
be invalidated by a free() in the same thread.

1 void regptr(uintptr_t loc, uintptr_t val){}

2 metadata* obj = meta_get(val);

3 if (obj) {

4 if (!in_lookback(obj, loc))

5 register(obj, loc);

6 }

7 }

Listing 6: Functions that provide pointer tracking

Our pointer invalidation system follows the global model by
maintaining a synchronous data structure. We ensure the correct-
ness of the heap representation under multiple threads. A free()
invalidates pointers stored on the stack for every thread.

However, to enable further optimizations for local variable track-
ing, we rely on the thread-local model. This model allows further
static analysis and covers most common situations. We note that
this assumption is shared by prior work; DangSan and FreeSentry
both rely on it for their loop optimization pass.

3 DESIGN AND IMPLEMENTATION
As shown in Figure 1, we designed HeapExpo on top of DangSan,
keeping its instrumentation and runtime libraries. DangSan’s trans-
formation passes run at link time, when stack variables have already
been promoted to registers. We therefore add another step before
the mem2reg pass to preserve relevant stack variables. When Dan-
gSan’s optimizations take place, these variables are still tracked as
on stack.

Figure 1: Overall Design of HeapExpo

3.1 Tracking Local Variable and Function
Argument

As previously discussed, dangling pointers can be stored in the
data section, on the heap, on the stack, and in registers. We have
discussed how prior work achieved tracking of pointers in memory.
In this section, we discuss how we track pointers promoted to
registers.
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1 void f(char *ptr) {

2 strcpy(ptr, "string1");

3 free(ptr);

4 }

5 void g(char *ptr) {

6 *ptr = 's';

7 }

8 int main() {

9 char *s1, *s2, *s3;

10 char c1, c2;

11 s1 = malloc(10);

12 regptr(&s1, s1); //reg s1

13 s2 = malloc(10);

14 f(s1);

15 s3 = malloc(10);

16 c1 = *s1;

17 g(s3);

18 c2 = *s3;

19 }

Listing 7: Local variable instrumentation example

Burden of register tracking. Computers have limited number
of registers. Therefore, the LLVM back-end maps the unbounded set
of LLVM registers to machine registers according to their liveness.
Because LLVM passes operate at the IR level, our pass is not aware
of machine registers and thus cannot easily track them. To ensure
complete coverage, invalidating pointers in registers is required.
To solve this problem, we propose a method that tracks local vari-
ables and function arguments without checking machine registers;
instead, we identify pointer variables that need to be tracked and
prevent them from being promoted to registers in the first place.

We run our LLVM pass before the mem2reg pass; at this point,
local variables and function arguments are all stored on the stack.
To track a local variable or function argument, wemark it as volatile,
ensuring that further optimization will keep the variable on the
stack. We do this by simply marking the relevant store and load
instructions as volatile in our LLVM pass. We do not modify other
variables and arguments and let the mem2reg pass promote them
to registers.

When a memory block is released, we check all associated point-
ers, including volatilized pointers. If they still point to the region,
we invalidate the pointers by making them point to invalid memory
space. Dereference of the pointers thus causes a segmentation fault.

One downside of this strategy is that it results extra memory
reads and writes, adding to the overhead to our system. To make
HeapExpo practical, we must therefore develop optimization tech-
niques that only track pointers that can potentially cause use-after-
free. Overall, the optimizations can reduce number of instrumented
instructions by half, leading to a significant speedup. We describe
these optimizations next.

3.2 Liveness Analysis
Tracking local variables by keeping them on the stack has a per-
formance impact because the compiler cannot optimize them into

registers. To reduce number of tracked variables, we apply liveness
analysis to local pointers and pointer arguments to functions based
on control flow within each function.

We say that a local pointer becomes a live dangling pointer when
(1) a function call invalidates it, and (2) it may be dereferenced later
in the function execution. There is no need to instrument local
pointers that are not live. In this way, we reduce the number of
instrumentation added and the number of stack variables tracked.

First, we find all definitions and uses of local pointer variables
and function parameters. Our LLVM pass takes place before the
mem2reg pass, so every store instruction is a definition, and every
load instruction is a use. At each function call, we make every live
stack variables volatile. Specifically, we mark as volatile the last
store before the call instruction and the first load after it.

In Listing 7, suppose we perform a check for main at line 14.
We want to examine the liveness of local pointers s1, s2, and s3 at
call to f(). s1 is defined at line 11 and used at line 16. It is possible
that the value of s1 is invalidated inside f(). Hence we make s1
volatile by making the store and load volatile. Also, we register the
stack location of s1 for tracking. s2 is defined at line 13 but never
used after f(). Thus, we do not need to track s2, as it cannot cause a
use-after-free. Although s3 is used at line 18, it is always guarded
by the definition at line 15. s3 may be invalidated in f(), but the
definition will always overwrite the old address before use. We thus
do not need to track s3 either.

In the example above, we should repeat the above check with
every function call in main, but we will show next that the check
at g() is not necessary.

With the control flow graph of the function, we can easily assess
the liveness of a variable. If there is a path from the function entry
point to some definition of a local pointer, and then to the call
instruction, it means that the pointer is potentially defined at the
call instruction. Similarly, if there is a path from the call instruction
to a usage, without encountering any definitions, it means the local
pointer is potentially dereferenceable after the call instruction. If
the local pointer is both potentially defined before the function
call, and potentially dereferenceable after the function call, we say
the pointer variable is live. We repeat the process with every call
instruction in the function to obtain a set of live local pointers to
track. Any local variables and function parameters that are not live
can be safely promoted to LLVM registers and optimized.

3.3 Call Graph Analysis
In the previous subsection, we examined the liveness of every local
pointer variable at each function call, assuming that the variable
may be freed inside the called function. Here, we introduce a call
graph analysis that can reduce the number of liveness checks.

Under the thread-local assumption, a stack pointer can only be
invalidated inside its thread, which means the function the pointer
is in must call free() to release memory. A call to a function that
does not release any memory cannot invalidate any stack variables.
Therefore, we can avoid adding checks at those calls.

We conservatively gather this information about functions with
the following algorithm. We conservatively regard external func-
tions and indirect jumps as possibly calling free. In order to make
library function calls precise, we can provide C/C++ library calls
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that never call free in our model. This way, we can eliminate some
call instructions to instrument. In our running example, we do not
need to add a check at the call to g() in Listing 7 because g() does
not release any memory.

3.4 Volatile Dropping Optimization
Combined liveness and call graph analysis can help us identify
stack variables that may introduce UAF. We then mark these stack
variables as volatile for later instrumentation. The volatilization
must occur before other passes like mem2reg optimize the code dur-
ing compilation. However, because the each source file is compiled
independently, library functions from other files are not available
until link time. Therefore, we perform a second pass of call graph
analysis at link time and drop unnecessary volatile instructions.
This pass is implemented as a link time optimization pass. We ex-
plicitly invoke mem2reg after volatile instruction dropping to ensure
newly optimized stack locations are lifted to registers.

4 EVALUATION
In this section, we evaluate the effectiveness of HeapExpo by ana-
lyzing OSS-Fuzz bugs [9, 23], and its performance by benchmarking
its time and space overheads compared to previous work.

4.1 Survey of UAF Bugs Discovered by OSS-Fuzz
To estimate how many bugs may be missed by prior work that
cannot track pointers through registers, we study use-after-free
bugs found in the OSS-Fuzz database [23], and manually categorize
the sources of dangling pointers. Our process is similar to debugging
where we identify the source of each dangling pointer as a heap
pointer, global pointer, local variable pointer, etc.

Reproducing older bugs fromOSS-Fuzz is not completely straight-
forward, as individual projects in OSS-Fuzz are continually updated
to their latest versions, and it is nontrivial to identify the correct
revision for both the project and its dependencies that will allow
the bug to manifest. Once the correct version is found, we can
then build the fuzzer component and use the provided test case to
reproduce the crash. To identify the correct versions and analyze
the bug, we:

• Find a commit of project source that references the bug
reported by OSS-Fuzz

• Find corresponding commits of upstream dependencies
• Find the commit of OSS-Fuzz at the time
• Build the executable and libraries with the correct versions
of their source code

• Use the OSS-Fuzz test case to reproduce the crash
• Rebuild with debugging flags “-O0 -g”
• Perform dynamic analysis with a debugger

We selected projects with reports of use-after-free bugs from
OSS-Fuzz database. We chose projects with an eye toward ease
of bug reproduction, based on the number of dependencies and
the complexity involved in compiling the fuzzer. Large projects
usually have complicated build scripts, making it difficult to turn
off optimizations. Without disabling optimization, the source of
dangling pointers can be ambiguous. In the end, we were able to
reproduce 19 bugs from 11 projects as shown in Table 4.

Source of Dangling Pointer Occurrence
Global Pointer 1
Heap Pointer 6

Local Variable Pointer 5
Function Argument Pointer 5

Reference of Pointer 1
Transformed Pointer 1

Table 3: Occurrence of UAF Bugs by Sources

1 char* ptr;

2 void func1(char* a) {

3 free(a);

4 *a = 0;

5 }

6 void func2(char* a) {

7 *a = 0;

8 }

9 int main() {

10 ptr = malloc(0x10);

11 func1(ptr);

12 func2(ptr);

13 }

Listing 8: Category Example

We note that our selection process may bias our corpus toward
smaller, simpler projects, and may not be representative of all UAF
bugs in the wild. However, we argue that even this relatively small
convenience sample indicates the importance of tracking local vari-
ables and function arguments.

We categorize the reproduced bugs by the source of dereferenced
dangling pointers, manually reviewing reproduced crashes. Refer-
encing the source code with the crash logs, we are able to identify
the source of each dangling pointer. The result of our manual re-
view is shown in Table 3. Reference of pointer is the case where
the function argument is a pointer (reference) to a pointer. If the
compiler inlines the function and promotes the referenced pointer,
prior work cannot track the pointer. Transformed pointermeans
that before the dangling pointer is used, it is stored as non-pointer
data. In the case listed in the Table, the pointer is divided by two
before being stored to memory to save one bit of space.

Even if a dereferenced dangling pointer is stored in local vari-
ables or function arguments, it is not necessarily the source of
the dangling pointer. The underlying reason is that an invalidated
dangling pointer can be propagated to these variables. To avoid
such mis-categorization, we check whether recent pointer store
in function control flow propagates a valid pointer or an invali-
dated dangling pointer. If the recent pointer store propagates an
invalidated pointer, as in Listing 8, the source of the UAF in func1
is identified as a function argument, while that of func2 is iden-
tified as global variable, because the dangling global variable is
propagated to func2’s argument.
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OSS-Fuzz ID Project Source Promoted
10304 libxml2 Heap Variable ×
17737 libxml2 Heap Variable ×
9975 openvswitch Reference of Pointer ✓
10796 openvswitch Local Variable ✓
3569 proj4 Function Argument ✓
3619 proj4 Function Argument ✓
3630 proj4 Function Argument ✓
13878 systemd Local Variable ✓
13882 systemd Local Variable ✓
11752 yara Heap Variable ×
11753 yara Heap Variable ×
18004 usrsctp Function Argument ✓
18080 usrsctp Function Argument ✓
4349 bloaty Heap Variable ×
10200 libaom Transformed Pointer (on Heap) ×
5921 wireshark Global Variable ×
17953 curl Local Variable ✓
17954 curl Local Variable ✓
16884 libhevc Heap Variable ×

Table 4: Summary of Reproduced OSS-Fuzz Bugs

4.2 Effectiveness of UAF Detection
In this section, we test the effectiveness of HeapExpo against use-
after-free bugs in a real-word program and our own crafted ex-
amples. We tested HeapExpo and DangSan with a QuickJS ex-
ploit [5, 24]. The fact that the dangling pointer comes from a local
variable makes DangSan incapable of detecting the exploit. On the
other hand, HeapExpo is able to track and invalidate the dangling
pointer in the local variable and correctly triggers a crash when
the invalidated pointer is dereferenced.

Besides manually crafted tests, we also created sample test code
by extracting snippets of buggy code from the use-after-free bugs
discovered by OSS-Fuzz, which makes it easier to build with Dan-
gSan and HeapExpo. This sample code also allow us to easily com-
pare between the two systems. The details can be found in our
GitHub repository.

Source DangSan HeapExpo
Global Pointer Yes Yes
Heap Pointer Yes Yes

Volatile Stack Pointer Yes Yes
Local Variable Pointer No Yes

Function Argument Pointer No Yes
Reference of Pointer Partially Yes
Transformed Pointer No No

Table 5: DangSan vs. HeapExpo Coverage by Type. When
promoted by function inlining pass, reference of pointer is
not protected by DangSan .

The results from the sample code show that HeapExpo correctly
tracks dangling pointers in local variables and function arguments.

As shown in Table 3, we observed that the major sources of dangling
pointers are heap variables, function arguments and local variables.
According to the result in Table 5, HeapExpo is able to track two
of the major sources where DangSan fails. Neither DangSan nor
HeapExpo can track the transformed pointer case in libaom [18].
We closely studied the pointer reference case, and we believe that
it is unlikely to be protected by DangSan, because the function is
small and the referenced pointer is a function argument. By contrast,
HeapExpo succeeds in this case by preserving the stack location of
the function argument.

The exploitability of use-after-free vulnerability usually depends
on how attackers could reliably arrange the heap. Limiting the
attack within a function’s lifespan makes it hard to align dynamic
memory, but we have seen that the QuickJS exploit [24] leverages
a dangling local variable. Furthermore, we cross checked OSS-Fuzz
and CVE database to search for use-after-free bugs caused by dan-
gling local variables. Although only a few OSS-Fuzz bugs were
also present in the CVE database, we found two such examples,
CVE-2019-17534 (OSS-Fuzz id: 16796) and one of the CVE-2018-
1000039 bugs (OSS-Fuzz id: 5492), with high risk scores of 8.8 and
7.8 respectively. This demonstrates that the bugs missed by prior
systems can indeed be exploitable.

During the course of our evaluation we also found a minor bug
in DangSan’s pointer packing methods that led to it missing some
stack variables. The sample code registers two stack pointer loca-
tions, but DangSan fails to register and invalidate the second reg-
istered location. By reviewing DangSan’s packing code, we found
that the packed value is never written back. After we fixed the bug,
we are able to correctly track stack variables with DangSan.
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4.3 Performance and Memory Overhead
We tested the performance of HeapExpo on CPU-intensive bench-
marks, comparing the run time of HeapExpo and DangSan with the
common unprotected baseline. We mainly used the SPEC CPU2006
benchmark [14], which was also used to evaluate DangSan. We
found several benchmarks that executed correctly under DangSan
but not HeapExpo (gcc, perlbench and libquantum). We believe
that these failures are caused by bugs in the underlying benchmark
programs, as DangSan’s authors also reported having to patch some
programs in the CPU2006 benchmark suite in order to fix UAFs.
We compare the time overhead between HeapExpo and DangSan
on the remaining benchmarks.

Our experiments were run on a server with two Intel Xeon
X5690 CPUs @3.47GHz. We ran the benchmarks 3 times and report
the median. The result of individual time overhead is shown in
Figure 2. Although we could not directly benchmark FreeSentry
and DangNull because of unpublished optimizations and closed
sourced code, we estimated and included the results reported in
their papers. Aside from a few missing benchmarks, HeapExpo still
performed as well as those conventional approach, let alone the
extra coverage of local pointers. We computed the geometric means
of the time overheads from DangSan and HeapExpo. Our geometric
mean over common benchmarks is 1.66, with 66% overhead from
baseline, while DangSan has an overhead of 46%. Our overhead on
top of DangSan is therefore 20%. Without propagation intensive
programs omnetpp and xalancbmk, HeapExpo has geometric mean
of 35% run-time overhead from non-instrumented baseline among
12 benchmarks.

In the experiment, we found runtime overhead is moderately
correlated to number of pointer propagations that occurred with a
correlation score of 𝑟 = 0.61. The extra pointer propagation from
newly tracked sources adds extra overhead. Therefore, the runtime
overhead of pointer propagation intense benchmarks increases
moderately when there are many new propagations. For example,
in xalancbmk, there are 7.2 trillion pointer propagations tracked by
HeapExpo versus 2.4 trillion tracked by DangSan. Although this
causes the runtime overhead to increase from 2.2x to 3.5x, about
three times as many pointer propagations are tracked by HeapExpo.

Figure 2: HeapExpo vs. DangSan Run-time Overhead

We also measured the memory overhead of HeapExpo and Dan-
gSan under SPEC CPU2006 benchmarks. As shown in Figure 3,

the memory overhead of HeapExpo is not significantly different
from DangSan. We did not change the underlying data structures
of DangSan, but we did increase the number of source type to track,
so a small increase in memory overhead is expected. Due to the
drastically increased pointer propagation behavior in xalancbmk
benchmark, the memory overhead is increased as well. Among the
benchmarks shared by all approaches, HeapExpo has a geometric
mean of 100%, while DangSan has 87% and DangNull has 137% over-
head. Although it requires slightly more memory than DangSan,
HeapExpo consumes less memory than DangNull, which offers less
protection.

Figure 3: HeapExpo vs. DangSan Memory Overhead

4.4 Impact of Optimization
Here, we show how our liveness analysis and call graph analy-
sis affect the performance of HeapExpo. In Table 6, we compare
the number of instrumented instructions among different builds.
“HeapExpo (unopt)” has no static analysis optimization, and marks
every stack pointer as volatile. The “HeapExpo” build has static
analysis turned on and only marks stack pointers that may result
in UAF bugs as volatile. Finally, the “DangSan” build does not mark
any stack pointers volatile. Table 6 indicates that HeapExpo elim-
inates about half the pointers that need instrumentation in the
SPEC CPU2006 benchmarks compared to our base build, but still
has about 1–2 times more instrumentation than DangSan as a result
of our improved coverage. Figure 4 demonstrates that our optimiza-
tions greatly lower the amount of instrumentation and thus reduce
runtime overhead.

According to the number of instructions, we can also see that
stack pointers like local variables and function arguments make
up a large portion of pointer propagations overall. Comparing
the number of instrumented instructions between unoptimized
HeapExpo build and the DangSan build, we argue that there are
about 4 times more pointer propagation instructions present in the
program than those tracked by DangSan.
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Benchmark HeapExpo (unopt) HeapExpo HeapExpo LTO DangSan
perlbench 20224 15193 15193 7698
bzip2 237 107 72 35
mcf 259 173 145 130

gobmk 1795 1134 779 278
hmmer 3255 2433 1250 498
sjeng 118 101 47 14
h264ref 1916 950 669 406
omnetpp 23794 8749 7886 5673
astar 527 151 136 90

xalancbmk 175707 35666 27229 20338
Table 6: Number of Instrumented Instructions among Different Builds

These local variables and function arguments are not trackable
with any prior dangling pointer invalidation system. Promoted to
registers, these pointers are pushed to the stack during function calls
and popped when the function returns. Since no prior work tracks
pushed stack locations, exploits that make use of these dangling
pointers could evade detection.

The straightforward solution is to track all pointer variables.
However, that would incur 413% more instrumentation, and make
the overall overhead unacceptable. After applying our liveness
and call graph analyses, we reduce the instrumentation overhead
to 156%. This overhead is acceptable, but we can still do better
by removing further unnecessary instrumentation using the call
graph gathered during link time optimization. The number of in-
strumented instructions is consequently lowered to 86% more than
DangSan, and we still guarantee the safety of all pointer variables
under the thread-local assumption.

5 LIMITATIONS
The design of our work follows earlier research including FreeSen-
try, DangNull and DangSan. For this reason, our work shares their
common limitations. We discuss these limitations in this section.

Our system and other previous works are transformation passes
based on LLVM tool chain, which means that source code is re-
quired. Recalling other approaches in literature, source code is

Figure 4: Number of Instrumented Instructions Compared
to DangSan

often required to perform meaningful sanitizing with reasonable
overhead. After compiler and linker optimizations, binary code is
very different from its source, and meaningful information such
as variable types is lost during the process. Although it is possible
to retrieve a portion of the information through static analysis of
binary code, the information would not be helpful enough for pro-
tection because of the lack of completeness. We agree with prior
work that the limitation of requiring source code is an appropriate
trade-off.

Like most sanitizers, HeapExpo can only detect temporal safety
violations with instrumented code. That means the library source
code is also required to detect use-after-free bugs in libraries. The
linked libraries need to be compiled by the sanitizer as well. In
practice, this is implemented in OSS-Fuzz where all library code as
well as project code is compiled with the sanitizer flags.

We share another limitation with DangSan, where we do not
track pointers that are copied in type-unsafe ways. For example,
memcpy andmemmove in glibc are not tracked because instru-
menting them can result in non-trivial overhead. Tracking these
functions is achievable with some overhead by using an implemen-
tation that also records outwards pointers. Although our prototype
does not implement this, we think the type information could be
recovered more easily with a pass closer to the front-end where all
type information remains.

We also note that the fact that LLVM often optimizes the mem-
cpy function to trackable instructions like store makes this false
negative less significant. In Listing 9, LLVM interprets line 11 as
a memcpy call which copies data from a local to a global, so
global.data is not registered at line 11. Thus, when the memory
is released at line 15, global.data is not invalidated by our instru-
mentation. The use of global.data at line 16 does not raise an alert.
However, LLVM will transform the memcpy call to two simpler
instructions shown in lines 13–14, where line 13 is instrumented
with a call to regptr in line 12. This occurs because we have a rel-
atively small structure, so the cost for calling memcpy exceeds
the two simple instructions. The idea is that one can customize the
memcpy optimization to recover more pointer propagation. We
did not implement this because of the limited number of bugs in
this case, as von der Kouwe et al. discuss [26].
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1 struct str {

2 char* data;

3 int len;

4 };

5 struct str global;

6 int main () {

7 struct str local;

8 local.data = malloc(10);

9 strcpy(local.data, "string");

10 local.len = strlen(local.data);

11 global = local;

12 //regptr(&global.data,local.data);

13 //global.data = local.data

14 //global.len = local.len

15 free(local.data);

16 printf("%s\n", global.data);

17 }

Listing 9: False negative example

Finally like all current dangling pointer invalidation approaches,
our work does not support custom pointer manipulation. Compari-
son between a regular pointer with an invalidated pointer is broken,
but that between invalidated pointers is supported. Custom storage
for pointers such as compacting pointers to smaller sizes is not
trackable because type information is lost during the transforma-
tion. However, we believe this kind of direct pointer manipulation
is relatively rare: we only see one such case (in libaom [18]) among
our reproduced bugs from OSS-Fuzz.

6 RELATEDWORK
In this section, we discuss how our work relates to prior work in the
literature. HeapExpo is an improvement on the dangling pointer
invalidation approach for detecting use-after-free vulnerabilities.
Although that is not the only approach, its combination of low over-
head and strong protection compared with other methods makes it
attractive.

Dangling Pointer Invalidation. The previousworks using this
approach are DangNull [16], FreeSentry [28], DangSan [26] and
pSweeper [13]. Based on the LLVM toolchain, they all instrument
pointer propagation instructions at the IR level. The earliest works,
DangNull and FreeSentry, are conceptually similar but implemented
with different data structures. They both instrument store instruc-
tions in the LLVM IR as an LLVM optimization pass. DangNull
keeps a more complete data structure which records both inward
and outward pointers, but it only tracks pointers in global data and
on the heap. FreeSentry only registers inward pointers of an object,
but it extends dangling pointer detection to pointers stored on the
stack as well. Finally, DangSan extends FreeSentry by improving
the data structures used and supporting multi-threading; DangSan
uses a log-like data structure inspired by log-structured filesystems.
They also support multithreading by managing thread-local data
structures. In terms of overhead, DangSan is currently the state of
the art.

These three works all manage pointer propagation inline, while
pSweeper dedicates an extra thread to to manage the pointer meta-
data structures. It bookmarks the location of pointers and keeps
a list of pointers as a simple data structure. Concurrently, it runs
a separate thread that cycles through the bookmarked location to
register pointers and to clean out dangling ones. The use of extra
threads leverages idle CPU cycles in multicore systems to speed up
dangling pointer invalidation. However, it uses more computing
power overall due to extra worker threads.

The instrumentation strategy has remained the same across the
four previous works, so none of them are able to track stack pointers
promoted to registers. We studied a number of bugs in OSS-Fuzz
database and found local variables and function arguments are the
sources of more than half of the use-after-free bugs. Previous works
cannot deal with such cases, so we target these false negatives in
this paper.

Secure allocators. To ensure temporal safety, some prior work
focuses on creating a more sophisticated allocator that can detects
access to freed memory. Dhurjati and Adve [11] put each allocation
on a different virtual page, so that reads and writes to released pages
raise an error. DieHarder [22] marks freed chunks of memory and
suppresses the reuse of those memory blocks so that dereferencing
dangling pointers is likely to cause an exception. Cling [3] is an
allocator that introduces type-safe memory reuse that prevents
corruption of control addresses by inferring object types from the
allocation stack trace, so that dangling pointers will end up pointing
to the same type of object even if the allocation is reused.

Address-based checking. In this approach, metadata of point-
ers and memory addresses are stored and checked at dereference
time. Previous projects in the category include CETS [12] and
SafeC [4]. CETS is another compiler-based use-after-free detec-
tion. It also supports checking for local variables. CETS associates
pointers with the root object by pointing them to a key that indi-
cates the validity of the memory object. When memory objects are
released, these keys are invalidated. Access of the dangling pointer
would raise an alert during a key check. When combined with Soft-
Bound [19], it can achieve both spatial and temporal safety. As von
der Kouwe et al. [26] discussed, however, this approach has more
run-time overhead and compatibility issues than dangling pointer
invalidation approach. Lee et al. [16] also pointed that it has high
false positive rate, raising false alarms in 5 of 16 tested programs.

Safe C [4] is source-level instrumentation that adds extra meta-
data to raw pointers, including the actual raw pointer, size, and the
memory section it points to. It is able to perform bounds checking
and check temporal safety using these attributes. However, source-
level instrumentation can reduce the opportunities the compiler
has to optimize the program, and has a significant time overhead.

Debugging tools for use-after-free. The most widely used
tools for detecting memory errors are Valgrind [21] and Address
Sanitizer [25]. They also detect at the time of pointer dereference.
They are generally comprehensive, but comewith high performance
overhead. Valgrind is built on a dynamic binary translation (DBT)
framework. It translates and instruments binary code one block
at a time. However, at the machine language level, the type of a
memory location or register is ambiguous. Although we know a
referenced register value has to be a pointer, pointers may also
be used in arithmetic. Thus, pointer checking can often require a
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search through all of programmemory, which is inefficient. Another
possible approach using DBT would be to use taint analysis to
track all the pointers. However, we argue that this approach has an
extra overhead from taint analysis, and is unsuitable for runtime
protection.

Address Sanitizer [25] is a very effective tool for detectingmemory-
related errors. The essence of Address Sanitizer is using shadow
memory to mark the validity of every address. It postpones the
reuse of freed memory, so that use of a dangling pointer produces
access to memory marked invalid. Address Sanitizer overloads the
allocator functions and adds padding to memory blocks so that
access to the padding also raises alerts. Address Sanitizer shows
the effectiveness of shadow memory, but it cannot prevent sophis-
ticated attacks which force the reuse of memory. Moreover, the
run-time and memory overhead make it unsuitable for online pro-
tection use. Hardware Assisted Address Sanitizer, hwasan is an
optimization for memory usage on AArch64 and SPARC architec-
tures. With a low false-negative rate (99.61%), it probabilistically
detects UAF. Furthermore, its optimization makes dynamic memory
layout easier to predict, and thus the system is more exploitable if
probabilistic checking misses a dereference.

Garbage collection. MarkUs [2] introduces many optimization
techniques on top of garbage collection to tailor it for use-after-free
mitigation. During garbage sweeping, it scans memory for potential
pointers. Dynamic memory blocks are freed only when there is
no potential pointer referencing them. It is incapable of detecting
use-after-free by design and works only as a mitigation technique.
Unable to distinguish pointer types from raw data, conservative
garbage collection adds extra attack vector for memory exhaustion
where an attacker can put random heap addresses in controlled
buffers. Li and Tang [17] launched such attack against MemGC
[1, 27] to exploit Microsoft Edge.

Dangling pointer detection. Undangle [7] focuses on dangling
pointer detection that may result in use-after-free vulnerabilities.
Undangle works offline by processing the execution trace and allo-
cation log of the program. It applies taint analysis to track pointer
propagation during execution. Taint analysis significantly increases
the time overhead because every instruction must be instrumented
to propagate taint information, meaning that this approach can
only be used offline. We can provide similar functionality online by
recording and reporting invalidated pointers.

7 CONCLUSION
In conclusion, we improve on prior work on temporal safety analy-
sis. Focusing on dangling pointer invalidation, we support tracking
of a broader range of pointers including local variables and func-
tion arguments. Through a review of 19 real-world UAF bugs from
the OSS-Fuzz database, we found that 10 are ultimately caused by
dangling pointers stored in local variables and function arguments,
indicating that existing systems have significant gaps in coverage.

To close this gap, we introduced a novel approach that forces
such pointers to be stored on the stack, allowing them to be tracked.
However, tracking all such pointer variables and arguments can in-
troduce unacceptably high overheads, so we applied a static analysis
that identifies pointers that can never be involved in use-after-free
bugs and excludes them from instrumentation.

HeapExpo successfully closes an important gap in detection of
dangling pointers in C/C++ programs, and does so with reasonable
additional overhead compared to prior work.

To aid in future research, we choose to open source our prototype
HeapExpo at https://github.com/messlabnyu/heap-expo.
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