
DIGITAL FORENSIC RESEARCH CONFERENCE

Forensic Analysis of the Windows Registry in Memory

By

Brendan Dolan-Gavitt

From the proceedings of

The Digital Forensic Research Conference

DFRWS 2008 USA

Baltimore, MD (Aug 11th - 13th)

DFRWS is dedicated to the sharing of knowledge and ideas about digital forensics

research. Ever since it organized the first open workshop devoted to digital forensics

in 2001, DFRWS continues to bring academics and practitioners together in an

informal environment.

As a non-profit, volunteer organization, DFRWS sponsors technical working groups,

annual conferences and challenges to help drive the direction of research and

development.

http:/dfrws.org

Forensic analysis of the Windows registry in memory5

Brendan Dolan-Gavitt

MITRE Corporation, 202 Burlington Road, Bedford, MA, USA

Keywords:

Digital forensics

Microsoft Windows

Volatile memory

Registry

Cached data

a b s t r a c t

This paper describes the structure of the Windows registry as it is stored in physical mem-

ory. We present tools and techniques that can be used to extract this data directly from

memory dumps. We also provide guidelines to aid investigators and experimentally dem-

onstrate the value of our techniques. Finally, we describe a compelling attack that modifies

the cached version of the registry without altering the on-disk version. While this attack

would be undetectable with conventional on-disk registry analysis techniques, we demon-

strate that such malicious modifications are easily detectable by examining memory.

ª 2008 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The Windows registry is a hierarchical database used in the
Windows family of operating systems to store information
that is necessary to configure the system (Microsoft Corpora-
tion, 2008). It is used by Windows applications and the OS
itself to store all sorts of information, from simple configura-
tion data to sensitive data such as account passwords and en-
cryption keys. As described in Section 2, researchers have
found that the registry can also be an important source of fo-

rensic evidence when examining Windows systems.
Another important yet non-traditional source of forensic

data is the contents of volatile memory. By examining the con-
tents of RAM, an investigator can determine a great deal about
the state of the machine when the image was collected. Al-
though techniques for analyzing and extracting meaningful
information from the raw data found in memory are still rel-
atively new, guidance on the collection of physical memory
is now a common part of many forensic best practice docu-
ments, such as the NIST Special Publication ‘‘Guide to Inte-
grating Forensic Techniques into Incident Response’’ (Kent
et al., 2006).

Our work seeks to bring these two areas of research to-
gether by allowing investigators to apply registry analysis
techniques to physical memory dumps. We will begin by

explaining the structure of the Windows registry as it is repre-
sented in memory, and describe techniques for accessing the
registry data stored in memory. A prototype implementation
of an in-memory registry parser will then be presented, along
with some experimental results from several memory images.
We will also discuss particular considerations investigators
should be aware of when looking at the registry in memory.

Finally, we will show that although under normal
conditions the stable keys (see Section 3.3 for details on the
distinction between stable and volatile keys) recovered from

the in-memory copy of the registry are essentially a subset of
those found in the on-disk copy, an attacker with access to ker-
nel memory can alter the cached keys and leave those on disk
unchanged. The operating system will then make use of the
cached data from the registry, and a forensic examination of
the disk will not detect the changes. We will show how analyz-
ing the registry in memory can detect this attack.

2. Related work

Over the past several years, it has become increasingly clear
that the registry can contain a great deal of information that
is of use to forensic examiners. Research has shown that it
contains such data as lists of recently run programs (Stevens,

5 The author’s affiliation with The MITRE Corporation is provided for identification purposes only, and is not intended to convey or
imply MITRE’s concurrence with, or support for, the positions, opinions or viewpoints expressed by the author.

ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /d i in

1742-2876/$ – see front matter ª 2008 Digital Forensic Research Workshop. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2008.05.003

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 2 6 – S 3 2

http://www.elsevier.com/locate/diin

2006), logs of devices recently attached to the system (such as

USB keys) (Carvey, 2007), and wireless networks the user con-
nected to (Carvey, 2005a). Registry data, Carvey notes, ‘‘pro-
vides a wealth of information that the investigator can use
to make his case’’ (Carvey, 2005a).

Meanwhile, starting with the DFRWS 2005 Memory Analy-
sis Challenge (DFRWS, 2005), a great deal of progress has been
made towards cataloging the contents of physical memory on
Windows systems and documenting how to make use of the
information it contains. Using freely available tools, investiga-
tors can find disk encryption keys (Walters and Petroni, 2007),
list processes and threads (Schuster, 2006), and detect the

presence of some techniques used by malicious software
such as DLL injection and hiding (Dolan-Gavitt, 2007; Walters,
2006).

Attacks that alter cached data in memory to deceive the
operating system while remaining hidden from tools that
analyze non-volatile storage are not entirely unheard of. In
their 2006 USENIX paper, Petroni et al. (2006) described an
attack which modifies SELinux’s access vector cache to grant
additional privileges while remaining undetected by tradi-
tional kernel integrity protections. More broadly, attacks on
cached data fall into the category of in-memory operating

system alterations; other examples of this type of attack
include Metasploit’s DLL injection payload (Metasploit,
2008), which loads executable code into the address space
of an exploited process, and the Slammer worm, which
was never written to disk as it propagated from system to
system (F-Secure, 2003).

Documentation about the inner workings of the Configura-
tion Manager, the Windows subsystem that manages the reg-
istry, is sparse. The most complete reference is Windows
Internals, by Russinovich and Solomon (2004), which describes
some of the internal mechanisms, but does not provide

enough detail, on its own, to allow extraction of the registry
from memory. A blog post by Anand (2008) provides some
more details, and gives an example of manually translating
a cell index into a virtual address using WinDbg. Finally, a se-
ries of posts by Dolan-Gavitt (2008a–c) provide lower-level
technical details on the internal mechanisms of the Configu-
ration Manager.

3. The registry in memory

3.1. Overview

Although the Windows registry appears as a single hierarchy
in tools such as regedit, it is actually made up of a number
of different binary files called hives on disk. These files and
their relationship to the hierarchy normally seen are de-
scribed in KB256986 (Microsoft Corporation, 2008). The hive
files themselves are broken into fixed sized bins of 0! 1000
bytes, and each bin contains variable-length cells, which

hold the actual registry data. References in hive files are
made by cell index, which is essentially a value that can be
used to derive the location of the cell containing the refer-
enced data.

As for the structure of the registry data itself, it is generally
composed of two distinct data types: key nodes and value data.

The structure can be thought of as analogous to a filesystem,

where the key nodes play the role of directories and the values
act as files.1 One key difference, however, is that data in the
registry always has an explicit associated type, whereas data
on a filesystem is generally only weakly typed (for example,
through a convention such as file extension).

To work with registry data in memory, it is necessary to
find out where in memory the hives have been loaded and
know how to translate cell indexes to memory addresses. It
will also be helpful to understand how the Windows Configu-
ration Manager works with the registry internally, and how
we can make use of its data structures to tell us what the op-

erating system itself maintains about the state of the registry.

3.2. Locating hives

The Configuration Manager in Windows XP references each
hive loaded in memory using the _CMHIVE data structure.2

The _CMHIVE contains several pieces of metadata about the

hive, such as its full path, the number of handles to it that
are open, and pointers to the other loaded hives on the system
(using the standard _LIST_ENTRY data structure used in many
Windows kernel structures to form linked lists). It also has an-
other important structure embedded within it, the _HHIVE,
which contains the mapping table used to translate cell in-
dexes (more details on this are given in Section 3.3).

Our approach to finding hives in memory has two stages.
First, we scan physical memory to find a single hive; this is
easily accomplished, as each _HHIVE begins with a constant
signature 0! bee0bee0 (a little-endian integer). Furthermore,
the structure is allocated from the kernel’s paged pool, and

has the pool tag CM10; these two indicators are sufficient to
find valid _HHIVEs in all Windows XP images we have exam-
ined. Once a single instance has been found, the HiveList

member is used to locate the others in memory.3 The pointers
to the previous and next hives in the list are virtual addresses
in kernel memory space, and must be translated to physical
addresses using the page directory of some process.4

In typical Windows XP SP2 memory images, we found 13
hives: the NTUSER and UsrClass hives for the currently logged
on user, the LocalService user, and the NetworkService user
(total of six hives); the template user hive (‘‘default’’); the Se-

curity Accounts Manager hive (‘‘SAM’’); the system hive; the
SECURITY hive; the software hive; and, finally, two volatile
hives that have no on-disk representation. The two volatile
hives deserve some special mention: one, the HARDWARE

hive, is generated at boot and provides information on the
hardware detected in the system. The other, the REGISTRY

hive, contains only two keys, MACHINE and USER, which are
used to provide a unified namespace in which to attach all
other hives.

1 This analogy is borrowed from Farmer (2007), though it prob-
ably does not originate with him.

2 Data structures referenced in this paper can be found in the
public debug symbols for Windows XP Service Pack 2 unless oth-
erwise noted, and are viewable with the dt command in WinDbg.

3 This is substantially the same process described by Dolan-Ga-
vitt (2008b).

4 Since the kernel-space portion of virtual address space is the
same for all processes, any process will do.

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 2 6 – S 3 2 S27

3.3. Cell indexes

Unlike their layout on disk, hive files in memory need not be
contiguous. Moreover, keys and values may be added while

the operating system is running, and while it would be ineffi-
cient to have to search for free space in the registry file, simply
appending a new bin to the end of the hive would quickly
cause the hive to grow to an unmanageable size. To solve
this, the Configuration Manager creates a mapping between
cell indexes and addresses in virtual memory, in much the
same way that a process gets a map between its virtual
addresses and the physical address space of main memory
(Russinovich and Solomon, 2004).

The map for a given hive is stored in the _HHIVE structure’s
Storage member, and once located, it can be used to give us

full access to the registry data stored in memory. To perform
the translation, the cell index is broken into four parts: a one
bit selector saying whether the cell index’s main storage is
stable (on-disk) or volatile (only in memory), 10 bits giving
the index into the list of hive address tables, 9 bits that select
a single entry from that table, and finally a 12-bit offset into
the block given by that table entry. Fig. 1 shows how the differ-
ent parts of the cell index are related to the hive’s address ta-
bles and cell data. Now, given the address of the table
directory and a cell index, we can translate that cell index
into a virtual address in kernel memory (Dolan-Gavitt, 2008a).

Once we can perform this translation, reading the registry
is relatively straightforward, as the data structures are identi-
cal to those used for the on disk. Several open source programs
exist that can read binary registry data, such as Samba’s regfio
(Samba) or the perl module Parse::Win32Registry (Macfarlane),
and the data structures and algorithms from these tools can be

applied directly to the task of reading registry data in memory
with only small modification to use the in-memory translation
method for cell indexes. To walk the entire hive, we can start at
the root key (always at cell index 0! 20), and then walk the
subkeys just as we would an on-disk hive.

One crucial difference, however, is the existence of volatile
keys and values in in-memory hives. The _CM_KEY_NODE

structure has two members, SubKeyCounts and SubKey-

Lists, that give the number of subkeys and a pointer to the
subkey list, respectively. Each member, however, is actually
an array of length two: the first entry in the array refers to
the stable keys, while the second refers to the volatile keys.
Most existing implementations of Windows registry parsers,
such as Samba’s regfio library (Samba) and the Perl Parse::-
Win32Registry module (Macfarlane), do not handle volatile
subkey lists, and describe those portions of the key structure
as ‘‘unknown.’’ The registry implementation in ReactOS han-

dles volatile keys correctly, however.
These volatile keys are never stored on disk, and are auto-

matically generated by the operating system when the ma-
chine is booted. Examples of information stored in these
keys include an enumeration of all hardware detected on
the system, the volatile portions of a user’s environment,
mounted volumes, and the current machine name. Although
it is possible to access this information while the system is
booted using live response techniques, it cannot be recovered
using the on-disk hives from an image of the system.5 Using
these techniques, however, an investigator will be able to

Fig. 1 – Using a cell index with the hive’s address tables to derive a virtual address.

5 Carvey (2005b) notes this problem in a blog post when describ-
ing how to find out what user mounted a particular volume; this
information is only available in a volatile registry key.

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 2 6 – S 3 2S28

access the volatile keys and values in a stable, repeatable way

by examining a dump of physical memory.

3.4. Management mechanisms

In addition to simply extracting as many keys and values from
the cached copy of the registry in memory as possible, an in-
vestigator might wish to gain an understanding of what data
the Configuration Manager was working with. For example,
the examiner might wish to know what keys were open on the
system, and how many things were referencing them. To
answer these questions, one can make use of several data
structures used by the Configuration Manager to provide fast
access to currently open keys.

When an application attempts to open a key, the Configu-

ration Manager must be able to quickly determine if the key is
already open, and if so, return a handle to the same object, to
ensure that all applications are always referencing the same
data. To accomplish this, each open key, as well as all of its
ancestors, has associated with it a Key Control Block (data struc-
ture _CM_KEY_CONTROL_BLOCK), or KCB, that keeps track of its
reference count, last write time, and cell index. The different
handles that each process gets will then all point to the
same KCB.

To satisfy the requirement that finding a KCB for a given
key be fast, the Configuration Manager uses a hash table to
keep track of all the KCBs. The address of this table is given

by the kernel global variable CmpCacheTable and its size by
CmpHashTableSize; the address of these variables can be
found either by using the debug symbols for the kernel that
was loaded in the memory image, or by searching through
the mapped kernel image and using some heuristic to validate
whether a given address is a pointer to the hash table.6 Each
entry is a pointer to the KeyHash member of a Key Control
Block, which is of type _CM_KEY_HASH. Entries in the hash ta-
ble can point to more than one Key Control Block, and the full
list for a given table entry can be found by repeatedly follow-
ing the NextHash pointer in the key hash structure (Dolan-

Gavitt, 2008c).

4. Implementation

We have implemented the techniques described in Section 3
as a plugin for Volatility (Walters, 2007). This allows us to
make use of the pre-existing libraries to do virtual address
translation, process listing, and so on, as well as easily define
the data structures needed to parse registry data (through the
data model exposed in vtypes.py).

Each hive is represented as its own virtual address space; the
cell indexes described earlier are treated as memory ad-
dresses within the space of the hive. Thus when we want to
find the root of a hive, it suffices to get the _CM_KEY_NODE

structure at hive address 0! 20; the hive address space object
then handles translating that cell index into a virtual address,

and the virtual address space object in turn translates the vir-

tual address into a physical offset in the memory dump.
A small library of functions has been developed that han-

dles the most common tasks associated with reading informa-
tion from registry hives: reading keys and values, opening
a key given its full path, getting the root of the hive, and so
on. Using these functions, other researchers should be able
to easily create their own plugins to extract and Interpret por-
tions of the registry that have forensic relevance, such as the
UserAssist keys (Stevens, 2006). Plugins have also been devel-
oped to automate the process of finding hives and examining
the Key Control Blocks used by the Configuration Manager.

5. Experimental results

Several experiments were performed to compare the effec-
tiveness of various methods of examining registry data. We
tested four images running Windows XP Service Pack 2:

1. The first image from the Computer Forensic Reference
Data Sets (CFReDS) project (NIST) (512 M of RAM), filename
xp-laptop-2005-06-25.img.

2. The second CFReDS image (512 M of RAM), filename xp-
laptop-2005-07-04-1430.img.

3. A recently booted VMWare image with 512 M of RAM.
4. A standard desktop machine with 1 GB of RAM that had

been up for 8 days, and had been in use for 541 days.

For each image, we counted the number of open keys and
values in the following ways:

" Number of Key Control Blocks in the cache table as
described in Section 3.4.
" Number of unique keys in process handle tables.
" Number of values found by searching pool allocations (using

Schuster’s (2007) PoolTools).
" Number of keys found by walking each hive from the root

key.
" Number of values found by walking each hive from the root

key.
" When available, number of keys and values in the on-disk

hives.

The results are summarized in Table 1. The data reveal
a few interesting facts: first, our technique of walking the
hive starting at the root in memory is more effective than
any other existing method of extracting registry keys and
values from RAM. Second, on a real workstation, the amount
of registry data recoverable from memory may be substan-
tially smaller than what was observed in a virtual machine
image; this is likely because of the large number of applica-
tions running, which would have caused unused portions of
the registry to be paged out to disk (see Table 2 for a compari-

son of how much registry data was unreadable in each image).
Finally, we note that an average of 631 keys and 1231 values
per image were volatile and would not have been found using
methods that only examine the hives on disk.

We also performed an experiment to determine how much
difference there was between the on-disk version of the

6 One such heuristic is given by Dolan-Gavitt (2008c), and in-
volves checking to see if the resulting KCBs in the candidate table
have a KeyHive member that points to a hive with the correct
signature.

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 2 6 – S 3 2 S29

registry and the in-memory copy. We copied the registry hives
from a suspended VMWare image, along with its memory im-

age, and then enumerated all keys in each hive, both in-mem-
ory and on disk, and compared the outputs. Across all hives,
we found:

" 546 keys were found only in memory. These are the volatile
keys described in Section 3.3.
" 8246 keys were missing from the memory view, either be-

cause the Configuration Manager had not mapped that por-
tion of registry hive in, or because it had been mapped into
memory and then paged out.
" Six keys had a more recent timestamp in memory than on

disk, indicating that a write had occurred but the change
had not yet been written to disk.

6. Guidelines for investigators

In general, any standard forensic methods for examining reg-
istry data can be applied to the registry data in memory. How-
ever, there are certain caveats that apply uniquely to the
examination of the data cached in RAM. Most importantly, it
cannot be assumed that the data found in memory is com-
plete. In addition to the usual consideration that the contents
of main memory may be swapped out to the page file, it is also

possible that parts of the registry may have never been
brought into memory in the first place. In this case, its entry
in the cell map table (see Section 3.3) will be set to zero, and
the data is unlikely to be found in memory.

The most immediate consequence of this is that tools that
deal with the registry from memory must be robust and able to
handle missing data without crashing. Our initial attempts to
work with registry data stored in memory involved extracting
the hive from memory and saving it to disk, writing NULLs

when data from memory was missing. However, we found
that existing tools were unable to deal with the missing sec-

tions, and would crash or display incomplete output, and we
were instead forced to write our own parser that was able to
detect invalid structures and ignore them.

Because not all of the registry will necessarily be in mem-
ory, the data recovered from RAM should be examined along-
side the on-disk hives. This will allow the investigator to get
a complete picture of the registry: every key and value will
be available on disk, and data that has not yet been written
to disk can also be recovered from memory. In addition, as
we will discuss in the next section, it is possible for an attacker
to alter the data stored in the hive in memory without modify-

ing the copy on disk; however, we will demonstrate that com-
paring the two views will reveal this activity.

7. Detecting the cached data attack

As seen in Section 5, the so-called ‘‘stable’’ registry data in
memory is generally a subset of what can be found on disk,
due to the fact that any modified keys or values are written
out to disk every five seconds by default (Russinovich and Sol-
omon, 2004). However, we have found that it is possible for an
attacker with the ability to modify kernel memory to alter the

cached registry data in memory, and thus alter the behavior of
the operating system, without the changes being visible in the
on-disk storage. For example, an attacker could find the key in
memory that holds the password hashes for the Administra-
tor user, and replace them with precomputed hashes for
a known password. The attacker would then be able to log
in as Administrator using the password of his choice.

We have tested this attack using WinDbg on a VMWare vir-
tual machine (though it could be accomplished fairly easily by
any piece of code with access to kernel memory). First, we lo-
cated the virtual memory address of the key SAM\Domains\

Account\Users\000001f0, and determined the address of

its ‘‘V’’ value (this is the data value that contains the password
hashes for the Administrator account). Then, we used the eb

command to overwrite the hashes with our own precomputed
LanMan and NT hashes for the password ‘‘foobar’’.7 After
logging out of the account to allow the new value to be read
by the logon process, we were able to log in with the password
‘‘foobar’’ through both the standard Windows login screen

Table 1 – Number of keys/values recoverable using various techniques

NIST XP 6/25 NIST XP 7/4 VMWare image Standard desktop

KCBs 3367 3998 2981 2703
Keys (memory,stable) 81,996 91,072 71,533 26,431
Keys (memory,volatile) 580 581 485 879
Values (memory,stable) 127,578 151,664 121,574 84,781
Values (memory,volatile) 1162 1165 963 1633
Keys (handles) 278 260 194 355
Values (pool) 7530 7424 4945 14,362
Keys (disk) N/A N/A 80,298 166,543
Values (disk) N/A N/A 144,468 315,054
Processes 47 45 23 128

Table 2 – Number of 0 3 1000 byte blocks readable from
hives in memory

Image Blocks
unreadable

Total
blocks

Percent
unreadable

NIST 6/25 37 6515 0.56
NIST 7/4 2 6542 0.03
VMWare image 103 5838 1.76
Standard desktop 6663 13,159 50.63

7 The process of calculating the hashes is fairly complex and
not germane here; for a good discussion see Dolan-Gavitt (2008d).

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 2 6 – S 3 2S30

and Remote Desktop. We then used system normally for the

next 15 minutes (ample time for the Configuration Manager’s
hive flush mechanism to take effect), created a memory dump
by pausing the VM and copying its vmem file, and rebooted the
virtual machine to verify that the new hashes had not been
saved.

As expected, the hashes had not been written out to the
disk hive, and the original password was once again in effect.
The changes were not flushed to the hive on disk because the
modification was made without using the Configuration
Manager’s normal mechanisms, which update a list of
‘‘dirty’’ bins when registry data is written and schedule

a hive flush (Russinovich and Solomon, 2004). To verify that
it was possible to detect this modification, we then extracted
the cached value of the ‘‘V’’ key from the saved memory
dump, and compared it with the version on disk, and thus
detected the inconsistency. An examiner looking only at the
on-disk hive would have found nothing amiss in this
situation.

8. Future work

At the moment, the tools we have developed for accessing the
registry in memory only work with images from Windows XP
SP2. In order to be useful to the widest range of users, support
for other versions of Windows such as Windows 2000 and
Vista should be added. Luckily, it appears that the basic mech-
anisms such as cell maps are essentially the same from Win-
dows 2000 onward; however, the process for finding the
_CMHIVE structures is likely to be somewhat different. Also,
the address of CmpCacheTablewill not be the same as on Win-
dows XP SP2, and it will have to be derived from the debug

symbols on these new platforms.
In addition, the prototype implementation we have cur-

rently still involves many manual steps to compare hives. Ide-
ally, this process should be automated, and produce a report
showing exactly what data differs between the hive in mem-
ory and its counterpart on disk. This would also make detec-
tion of any attacks on cached data trivial.

Finally, one limitation of the current techniques is that in
order to read a key, all of the key’s ancestors in the hive
must be accessible. This is because at the moment, our only
means of navigating to a key is to start at the root and work

our way downward. Thus if a single key is unreadable, the en-
tire subtree below that point will not be read. To solve this, we
might imagine instead doing a linear scan across they hive for
keys, subkey lists, and values, reassembling as many subtrees
as possible. These subtrees could even be reattached to the
main tree structure, provided there is only one missing key
in between: if key A lists a subkey at cell index B, and key C
lists its parent at index B, the presence of B can be inferred
even the key itself is unreadable.

9. Conclusion

With the techniques described in this paper, full access to the
registry data cached in memory is now possible. We have
demonstrated that the format of the registry data in memory

is identical to the structure found on disk, but with a different

address translation mechanism. Because of this, investigators
will be able to leverage all of the traditional forensic methods
that apply to the on-disk registry, with some caveats (see Sec-
tion 6).

Finally, we have shown that there are attacks that cannot
be detected without examining the registry in memory, and
explored one specific case where an attacker could modify ac-
count credentials in the registry without leaving traces on
disk. To counter such attacks, we recommended collecting
registry data from both RAM and the hard drive, and compar-
ing the two to obtain a complete picture of the state of the

Windows registry. Although we are not aware of any incidents
involving the attacks described in this paper in the wild, ex-
aminers will now be forearmed with tools that can counter
them.

By supplementing traditional registry and memory analy-
sis with these techniques, we hope that investigators will
gain new tools with which to understand incidents.

r e f e r e n c e s

ReactOS, <http://www.reactos.org/en/index.html>.
Anand G. Internal structures of the Windows registry. <http://

blogs.technet.com/ganand/archive/2008/01/05/internal-
structures-of-the-windows-registry.aspx>, 2008.

Carvey H. The Windows registry as a forensic resource. Digital
Investigation 2005a;2(3):201–5.

Carvey H. Registry mining. <http://windowsir.blogspot.com/2005/
01/registry-mining.html>, 2005b.

Carvey H. Windows forensic analysis. Norwell, MA, US: Syngress,
ISBN 159749156X; 2007.

DFRWS. The DFRWS 2005 forensic challenge. <http://www.dfrws.
org/2005/challenge/index.html>, 2005.

Dolan-Gavitt B. The VAD tree: a process-eye view of physical
memory. Digital Investigation, http://dfrws.org/2007/
proceedings/p62-dolan-gavitt.pdf, September 2007;4:62–4.

Dolan-Gavitt B. Cell index translation.<http://moyix.blogspot.
com/2008/02/cell-index-translation.html>, 2008a.

Dolan-Gavitt B. Enumerating registry hives. <http://moyix.
blogspot.com/2008/02/enumerating-registry-hives.html>,
2008b.

Dolan-Gavitt B. Reading open keys. <http://moyix.blogspot.com/
2008/02/reading-open-keys.html>, 2008c.

Dolan-Gavitt B. SysKey and the SAM. <http://moyix.blogspot.
com/2008/02/syskey-and-sam.html>, 2008d.

F-Secure. F-Secure virus descriptions: slammer. <http://www.
f-secure.com/v-descs/mssqlm.shtml>, 2003.

Farmer DJ. A forensic analysis of the Windows registry. <http://
eptuners.com/forensics/Index.htm>, 2007.

Kent K, Chevalier S, Grance T, Dang H. NIST special publication
800-86: guide to integrating forensic techniques into incident
response. 2006.

Macfarlane J. Parse:Win32Registry. <http://search.cpan.org/
jmacfarla/Parse-Win32Registry-0.30/>.

Metasploit. Metasploit framework user guide. <http://www.
metasploit.com/documents/users_guide.pdf>, 2008.

Microsoft Corporation. Windows registry information for
advanced users. <http://support.microsoft.com/kb/256986>,
2008.

National Institute of Standards and Technology (NIST). The
CFReDS project. <http://www.cfreds.nist.gov/>.

Petroni Jr NL, Fraser T, Walters A, Arbaugh WA. An
architecture for specification-based detection of semantic

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 2 6 – S 3 2 S31

http://www.reactos.org/en/index.html
http://blogs.technet.com/ganand/archive/2008/01/05/internal-structures-of-the-windows-registry.aspx
http://blogs.technet.com/ganand/archive/2008/01/05/internal-structures-of-the-windows-registry.aspx
http://blogs.technet.com/ganand/archive/2008/01/05/internal-structures-of-the-windows-registry.aspx
http://windowsir.blogspot.com/2005/01/registry-mining.html
http://windowsir.blogspot.com/2005/01/registry-mining.html
http://www.dfrws.org/2005/challenge/index.html
http://www.dfrws.org/2005/challenge/index.html
http://dfrws.org/2007/proceedings/p62-dolan-gavitt.pdf
http://dfrws.org/2007/proceedings/p62-dolan-gavitt.pdf
http://moyix.blogspot.com/2008/02/cell-index-translation.html
http://moyix.blogspot.com/2008/02/cell-index-translation.html
http://moyix.blogspot.com/2008/02/enumerating-registry-hives.html
http://moyix.blogspot.com/2008/02/enumerating-registry-hives.html
http://moyix.blogspot.com/2008/02/reading-open-keys.html
http://moyix.blogspot.com/2008/02/reading-open-keys.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://moyix.blogspot.com/2008/02/syskey-and-sam.html
http://www.f-secure.com/v-descs/mssqlm.shtml
http://www.f-secure.com/v-descs/mssqlm.shtml
http://eptuners.com/forensics/Index.htm
http://eptuners.com/forensics/Index.htm
http://search.cpan.org/jmacfarla/Parse-Win32Registry-0.30
http://search.cpan.org/jmacfarla/Parse-Win32Registry-0.30
http://www.metasploit.com/documents/users_guide.pdf
http://www.metasploit.com/documents/users_guide.pdf
http://support.microsoft.com/kb/256986
http://www.cfreds.nist.gov

integrity violations in kernel dynamic data. In: USENIX-
SS’06: Proceedings of the 15th Conference on USENIX
Security Symposium. Berkeley, CA, USA: USENIX
Association; 2006. p. 20.

Russinovich ME, Solomon DA. Microsoft Windows internals,
Fourth edition: Microsoft Windows Server(TM) 2003, Windows
XP, and Windows 2000 (pro-developer). Redmond, WA, USA:
Microsoft Press, ISBN 0735619174; 2004.

Samba. Regfio library. <http://viewcvs.samba.org/cgi-bin/
viewcvs.cgi/branches/SAMBA_4_0/source/lib/registry/>.

Schuster A. Searching for processes and threads in Microsoft
Windows memory dumps. In: Proceedings of the sixth Annual
Digital Forensic Research Workshop (DFRWS 2006). <http://
www.dfrws.org/2006/proceedings/2-Schuster.pdf>, 2006.

Schuster A. PoolTools version 1.3.0. <http://computer.
forensikblog.de/en/2007/11/pooltools_1_3_0.html>, 2007.

Stevens D. UserAssist. <http://blog.didierstevens.com/programs/
userassist/>, 2006.

Walters A. FATKit: detecting malicious library injection and upping
the ‘‘anti’’, Technical report. 4TF Research Laboratories; July 2006.

Walters A. The Volatility framework: volatile memory artifact
extraction utility framework. <https://www.volatilesystems.
com/default/volatility>, 2007.

Walters A, Petroni NL, Jr., Volatools: integrating volatile memory
forensics into the digital investigation process. In: Black Hat
DC; 2007.

Brendan Dolan-Gavitt received a BA in Computer Science and
Mathematics from Wesleyan University in Middletown, CT in
2006. He will be joining the Ph.D. Computer Science program

at the Georgia Institute of Technology the fall of 2008.

d i g i t a l i n v e s t i g a t i o n 5 (2 0 0 8) S 2 6 – S 3 2S32

http://viewcvs.samba.org/cgi-bin/viewcvs.cgi/branches/SAMBA_4_0/source/lib/registry
http://viewcvs.samba.org/cgi-bin/viewcvs.cgi/branches/SAMBA_4_0/source/lib/registry
http://www.dfrws.org/2006/proceedings/2-Schuster.pdf
http://www.dfrws.org/2006/proceedings/2-Schuster.pdf
http://computer.forensikblog.de/en/2007/11/pooltools_1_3_0.html
http://computer.forensikblog.de/en/2007/11/pooltools_1_3_0.html
http://blog.didierstevens.com/programs/userassist
http://blog.didierstevens.com/programs/userassist
http://www.dfrws.org/2006/proceedings/2-Schuster.pdf
http://www.dfrws.org/2006/proceedings/2-Schuster.pdf

	Forensic analysis of the Windows registry in memory
	Introduction
	Related work
	The registry in memory
	Overview
	Locating hives
	Cell indexes
	Management mechanisms

	Implementation
	Experimental results
	Guidelines for investigators
	Detecting the cached data attack
	Future work
	Conclusion
	References

