
Acknowledgements

First and foremost, I’d like to thank my thesis advisors, Daniel Krizanc and Nor-

man Danner, who were invaluable in all phases of this project. Roger Dingledine

was also consistently friendly and helpful in answering my questions about Tor’s

protocol on IRC. I would also like to extend my thanks to the following projects

for creating the tools that made this research possible: User-mode Linux, for

making our simulation method possible, the GNU Project, for providing so many

essential standard tools, and the Debian project, for creating a lightweight and

usable operating system that made an excellent base for all our virtual machines.

Finally, I want to thank caffeine, for getting me through so many sleepless

nights, and my friends and family, for making the days after the sleepless nights

bearable.

i

Contents

Acknowledgements i

Chapter 1. Introduction 1

1. Anonymity-providing Systems 1

2. Anonymity Networks 2

3. Why Tor? 3

4. Organization 4

Chapter 2. The Design of Tor 5

1. Introduction 5

2. Cells 5

3. Circuit Establishment 6

4. Circuit Lifetime 7

5. Relaying Messages 7

6. Tearing Down Circuits 8

7. Quality of Service Measures 8

8. Hidden Services 10

9. Directory Servers 11

Chapter 3. Attacks on Tor 13

1. Basic Traffic Analysis 13

2. Path Confirmation Attack 14

3. The Intersection Attack 15

ii

4. The Predecessor Attack 15

5. Work Out from the Middle 17

6. Low-cost Traffic Analysis of Tor 18

Chapter 4. Methodology 20

1. The Backtrack Attack 20

2. Platform Setup 22

3. Network Setup 23

4. Attack Software 24

5. Experimental Setup 25

Chapter 5. Results 27

1. Uniform Traffic 27

2. Simulation 1: 15 Clients, 15 servers, 15 Onion Routers 27

3. False Positives 28

4. The Effect of Window Size 29

5. Simulation 2: 60 Clients, 15 servers, 15 Onion Routers 31

Chapter 6. Conclusion 32

1. Effectiveness of the Attack 32

2. Possible Improvements 32

3. Conclusion 33

Appendix A. Source Code Listings 35

1. auto attack.py 35

2. bdg config.py 45

3. correlations.py 45

4. cross corr.py 49

5. data sources.py 50

iii

6. make answers.py 52

7. makewin.py 53

8. netstat.py 57

9. pcap utils.py 58

10. tcpdump server.py 60

11. timestamp.py 62

12. datagen.c 64

Bibliography 69

iv

CHAPTER 1

Introduction

1. Anonymity-providing Systems

In general, when a client accesses any server over the Internet, a great deal

of information is trivially obtainable. In particular, the sender’s IP address is

included in every packet of data they transmit, and this information can be used

to determine their Internet Service Provider and in many cases their approximate

geographic location. In addition, each packet contains the IP address of its desti-

nation. Anonymous networks provide a way of preventing outside observers from

determining that an initiator and a responder are, in fact, communicating.

The most common way of achieving this anonymity is by routing the connec-

tion through a series of intermediate proxy servers. The goal is that the recipient

will only be able to uncover the address of the proxy server that directly contacted

him, allowing the identity of the original sender to remain hidden. Along the way,

the intermediate nodes in the route may mix (send packets from many users out

in an different order than they were received) or delay packets in order to frus-

trate attempts at uncovering the sender through traffic analysis. Such networks

are known as mix-nets, and were first described by Chaum [11].

In many cases, however, it is not feasible to employ mixing or delaying of

packets; for most interactive applications, such as web browsing, SSH sessions, or

live chat, too much mixing or delaying will result in a poor or unusable experience

for the user. A web browsing session, would quickly become frustrating if it took

five minutes for each page to load. It seems, then, that there is a trade-off between

1

1. INTRODUCTION 2

anonymity and speed.1 This thesis examines what threats are actually posed by

traffic analysis against low-latency mix-nets and how practical it is to implement

them on a real network, using Tor as our case study.

2. Anonymity Networks

Many different designs have been proposed to allow users to achieve anonymity.

Although we will primarily treat Tor, a brief overview of the systems available may

be useful.

• The Anonymizer [1] and other anonymous proxy services offer anonymity

by allowing a user to connect to remote web sites through a single proxy

server, which strips out identifying information and then forwards the

request on to the destination. While this approach is quite fast and easy

to understand, users must trust the operator of the proxy server not to

record information about the identities of clients. It also creates a single

point of failure—an attacker can focus his efforts on compromising the

proxy and, if successful, establish the identities of all clients using the

proxy.

• Java Anon Proxy (JAP) [5] uses static routes called cascades, made

up of several mixes with encryption between each mix. Many users share

the same route, which makes it harder to distinguish any one user by

observing network traffic along the cascade. Currently, there are four

cascades, but only one (Dresden-Dresden) receives a significant amount

of traffic.2

1A much more in-depth analysis of this notion of trading strong anonymity for efficiency is given
in Back et al. [10].
2Source: http://anon.inf.tu-dresden.de/status.php, accessed 4/4/2006.

1. INTRODUCTION 3

• Mixminion [12] is an anonymous remailing system that allows users

to send messages anonymously. Because e-mail does not require a high

level of interactivity, Mixminion can afford to add large amounts of delay

as well as reorder messages. This allows it to protect anonymity against

extremely powerful adversaries. These strategies, however, are unsuitable

for applications which require low latency, such as web browsing and

Internet Relay Chat.

• Peer-to-peer systems such as Tarzan [14] and MorphMix [19] have all

participants generate cover traffic (fake traffic intended to prevent an

outside observer from compromising anonymity by the numbers and sizes

of packets at a source and destination) as well as relay traffic for other

users.

• Tor uses layered encryption to ensure that each intermediate proxy only

knows its predecessor and successor in a path. It does not use any mixing

or delaying, which makes it fast and responsive for interactive traffic.

3. Why Tor?

Tor was chosen over the other networks mentioned for several reasons. First,

it is one of the most popular anonymizing networks currently in use: there are

over 450 Tor nodes currently running3 and it was estimated to be serving over

125,000 clients as of January 2006.4 Tor is also free and open-source, and can be

set up on a private network, which made simulations using the real Tor software

possible. It is well-documented and continues to receive active development.

3According to http://www.noreply.org/tor-running-routers/, retrieved 4/4/2006.
4Roger Dingledine, personal communication. March 8, 2006.

1. INTRODUCTION 4

4. Organization

Chapter 2 describes in detail the network protocol Tor uses to establish con-

nections and send data. Chapter 3 lists several known attacks on the anonymity

Tor provides and includes for each attack a description of the adversary’s goals

and the capabilities he needs to achieve those goals. This chapter also discusses

the efficiency and feasibility of each attack. In chapter 4, we present an attack of

our own based on a method of timing analysis used in Levine et al. [16] (described

in detail in Chapter 3, and describe how we tested its effectiveness on a small

network of 20 Tor nodes and 60 clients. Finally, chapter 5 describes and analyzes

results of the simulations.

CHAPTER 2

The Design of Tor

1. Introduction

Tor, the “second-generation onion router,” is an overlay network that attempts

to provide anonymity for its users.1 Like most other anonymity-providing systems

currently in use, it is a mix network [11]: it routes each connection through a series

of nodes, each of which should know only the previous and next node in the circuit.

Currently, Tor routes connections through three intermediate nodes before

forwarding them on to the destination. There are more than 450 nodes running,

and the Tor network is used by at least 125,000 people worldwide.

2. Cells

To make use of Tor, a client connects using an application called the Onion

Proxy, which selects a set of Onion Routers, establishes a path through Tor (called

a circuit; the protocol for creating circuits is described below), and sends data.

All data sent through Tor is encapsulated into cells, which are fixed-length (512

bytes) packets. Cells come in two forms: control cells, which are intended to be

interpreted directly by the node that receives them, and relay cells, which are

forwarded from one end of the circuit to the other.

Each cell begins with a two byte Circuit ID, which is used by the Onion Router

to keep track of the multiple circuits that pass through it. In a control cell, the

1The description of Tor here is based almost exclusively on the Tor design document [13], though
some clarification on the congestion control mechanisms comes from Murdoch and Danezis [17]
and personal communication with Roger Dingledine on IRC.

5

2. THE DESIGN OF TOR 6

Circuit ID is followed by a one byte specifying the type of control command, and

then 509 bytes of data. Relay cells have an additional header that includes a

Stream ID (to allow a single circuit to carry multiple TCP streams), a digest

(which provides integrity checking), and a relay command. There are 498 bytes

available for data in each relay cell.

3. Circuit Establishment

Circuit establishment is performed incrementally. The user’s Onion Proxy

randomly selects a sequence of nodes to use in the circuit,2 and then sends a control

cell with the command create with the first half of the Diffie-Hellman handshake

gx to the initial node in the sequence. The Onion Router will then reply with a

control cell of type created and place the other half of the DH handshake, gy, into

the data section along with a hash of the symmetric key that has been negotiated.

All communications between the Onion Proxy and the Onion Router, as well as

connections between Onion Routers, are sent over a TLS-encrypted link.

A circuit can be extended by sending a relay cell with the relay extend com-

mand destined for the final node in the circuit (the creation and transmission of

relay cells is described below) containing the address of the new node to add and

the first half of the DH handshake. Upon receiving a relay extend message, a node

will establish a connection to the specified address (using the same create/created

sequence of messages described earlier), and send a relay extended message with

the other half of the DH handshake back along the circuit. The client now shares

a symmetric key with the new node, and the circuit has been extended.

2In fact the selection is not entirely random; the client prefers nodes with good bandwidth and
uptime, and the last node in the circuit will be chosen so that its exit policy (the type of traffic
a node will forward outside the Tor network) permits the traffic that the user wants to send.

2. THE DESIGN OF TOR 7

4. Circuit Lifetime

According to the Tor technical FAQ [8], Tor will use the same circuit for new

TCP streams for ten minutes. It is important to note, however, that once a circuit

is built and is transporting one or more TCP streams, it will stay open until all

streams it is carrying have closed. This feature is necessary to support many

protocols such as SSH, which would be unable to keep track of a session if it

switched circuits (and hence exit nodes) during the session.

5. Relaying Messages

Relay cells are created by choosing a recipient on the circuit (usually this

is the last node, but it need not be—this property of Tor is called leaky pipe

circuit topology, since a relay cell need not travel the entire length of the cir-

cuit), and successively encrypting the relay header and its payload using the keys

negotiated with each node in the circuit, starting with the final node. For ex-

ample, suppose that Alice shares symmetric keys K1, K2, and K3 with routers

N1, N2, N3, and she wants to send a message M , using N3 as her exit node.

She encrypts the message first with K3, then K2, and finally with K1, producing

E(K1, E(K2, E(K3, (H(M), M)))), which she can then send to N1 (H(M) here

is digest mentioned in Section 2). When an Onion Router receives a relay cell,

it looks up the key corresponding to the Circuit ID, decrypts the contents, and

checks to see if the digest contained in the cell matches the computed digest of

the payload. If it does match, then the Onion Router can accept it and process

the message. Otherwise, it simply looks up the next node in the circuit and sends

the (decrypted) message on. Only when the message has reached its intended

recipient and all layers of encryption have been removed will the digest be correct

(since the hash is 48 bits, the chance of an accidental collision is very low).

2. THE DESIGN OF TOR 8

Sending data destined for the outside world (for example, a web site) is simply

a matter of establishing a connection using a relay cell with the command relay

begin (which will be acknowledged by the exit node with a relay connected cell) and

then sending data through relay data cells. Any TCP stream can be transported in

this way; user applications communicate with the Onion Proxy using the SOCKS

protocol [15].

6. Tearing Down Circuits

Circuits, once created, can be destroyed in two ways: all at once, or incremen-

tally. To tear down a circuit entirely, the Onion Proxy sends a control cell with

the command destroy to the first node. Each node closes all connections associ-

ated with that circuit and then passes the destroy message on to the next node,

until it reaches the final node in the circuit. Alternatively, a user can tear down

a connection by sending a relay truncate cell to any node on the chain. When a

relay truncate command is received, the node sends a destroy control cell forward,

removing all the nodes after it from the circuit, and sends back a relay truncated

acknowledgement to the client. The circuit can then be extended to new nodes

if desired. Tearing down connections incrementally allows a user to change the

path through Tor that a connection takes without alerting any of the intermediate

nodes that anything has changed. It also provides a way for intermediate nodes

to let the user know if the next node in a circuit goes down—the node simply

sends a relay truncated message back to the initiator.

7. Quality of Service Measures

Several different mechanisms are used by Tor to provide congestion control and

the ability for Onion Routers to limit the amount of bandwidth used. Allowing

2. THE DESIGN OF TOR 9

rate limiting is intended to make running an Onion Router more attractive (ORs

are run entirely by volunteers). For this type of bandwidth limiting, Tor uses a

token bucket algorithm: tokens are added to the bucket at a fixed rate, and when

n bytes need to be transmitted, n tokens are removed from the bucket. If the

bucket is empty, no data is transmitted. This allows the node operator to specify

an average amount of bandwidth usage that will be maintained, while permitting

occasional bursts above the specified average.

Links between Onion Routers may also become congested if many circuits

share the same nodes. To prevent this, each Onion Router keeps track of two

windows for every circuit it is a part of: the packaging window and the delivery

window. The packaging window represents the number of cells the node is willing

to package and send back to the client while the delivery window counts the

number of cells the node is willing to pass towards the final destination. Each

window is initialized to 1000 cells. When an Onion Router sends a cell towards

the destination, it decrements the delivery window ; likewise, when it sends a

cell back towards the client, it decrements the packaging window. If the count

on a window reaches zero, the node stops relaying data on that circuit in the

corresponding direction.

An Onion Router increments its windows when it receives a relay sendme cell

from an adjacent node; such a cell indicates that the node that sent it is capable

of receiving more data. If a link becomes congested, no relay sendme messages

will be sent, the window will eventually reach zero and the node will stop sending

data in that direction, easing the congestion. If a node receives a relay sendme

from the node ahead of it, it increments its delivery window by 100; conversely, if

it receives a relay sendme from the node that precedes it, the packaging window

is incremented by 100.

2. THE DESIGN OF TOR 10

Finally, Tor also distinguishes bulk transfers from interactive traffic by com-

paring the frequency at which different streams send cells, and gives interactive

traffic higher priority, which allows decent throughput for bulk traffic while im-

proving performance for the most common application of Tor: web browsing.

8. Hidden Services

Tor also allows for the possibility of creating a hidden service, which is a

resource that can be accessed while allowing the person providing the service to

remain anonymous. The creator of a resource chooses several nodes within Tor

to act as introduction points, builds a circuit to each of them, and then advertises

the introduction points through Tor’s lookup service. He also creates a long-term

public/private keypair, which he uses to sign the advertisement.

When a user wants to connect to the service (users must learn about the service

out-of-band), he looks up the introduction points and then randomly chooses an

Onion Router to act as a rendezvous point. The user then creates a circuit to

the rendezvous point and gives it a randomly generated cookie that will be used

to identify the service. Finally, the user builds a circuit to an introduction point

and sends a message (encrypted with the service’s public key) that contains the

address of the rendezvous point, the cookie, and the first half of a DH handshake.

If the service is willing to respond, it can build a circuit to the rendezvous point,

provide the cookie, and send the second half of the handshake, establishing a

shared key between user and service. Communication can now proceed as usual.

By adding a layer of indirection through the use of the rendezvous point,

Tor also allows the hidden service to decide whether or not to accept any given

connection.

2. THE DESIGN OF TOR 11

9. Directory Servers

In order for clients to connect through Tor, they must have information about

what Onion Routers are available. To achieve this, Tor uses several nodes that

are trusted more than others, called directory servers. The IP address, public key,

and fingerprint of the directory servers (there are currently three) is built into

every Onion Proxy, but the defaults can also be changed through a configuration

option.

When an Onion Router wishes to make itself available for circuits, it publishes

its server description to the directory servers. If the OR’s fingerprint is not already

known to the directory server, its information will not be made available on the

directory server—at present, the operators of the directory servers must manually

approve all new Onion Routers. If the OR is recognized, however, it will be

added to the list of running Onion Routers and information about it will be sent

whenever a client requests a list of all running routers, including its IP address

and exit policy.

Clients, meanwhile, obtain a list of running routers by simply requesting one

from the directory servers through HTTP. These lists are signed using the direc-

tory server’s private key, to prevent an attack where an adversary tricks a client

into believing that some machine the adversary controls is a directory server.

There is no mechanism for ensuring that all directory servers agree on the state of

the network; each directory server just publishes the information it knows about.

Clients then decide on the state of the network by going with the majority opinion

from the directories they have received.

It should be noted that the use of centralized directory servers does leave Tor

vulnerable to attacks on those servers. If an adversary can compromise more than

2. THE DESIGN OF TOR 12

half of the directories, he can then choose to only publish information about onion

routers under his control, and easily trace any connections.

CHAPTER 3

Attacks on Tor

One of the more controversial features of Tor is its adversary model: in con-

trast to most anonymous systems, Tor does not attempt to protect users from

powerful adversaries capable of observing all traffic on the network (known as a

global adversary in anonymity literature). Instead, it attempts to protect against

attacks where the adversary is capable of observing or altering only some fraction

of network traffic, or compromising some fraction of the Onion Routers on the

network.

Despite these limitations on the types of attackers, there are still a number of

attacks that have been presented against Tor. These are detailed below.1

1. Basic Traffic Analysis

One capability that nearly all of the following attacks require is the ability,

given some guess that two parties are communicating, to confirm or reject that

guess. To do this, one most often makes use of some form of traffic analysis to

correlate the traffic observed on one node with that observed at another. This

task is made much easier if the anonymity-providing system does not attempt

to delay, reorder, or drop packets as they go between nodes. Tor does not do

any explicit mixing on any packets which pass through the network and the only

latency introduced is that which naturally arises as a packet travels across the

Internet. To help clarify the discussion of specific attacks, we will describe here

1Many of these attacks do not refer specifically to Tor, but rather to low-latency mix systems
in general. I have only included such attacks when they are directly applicable to Tor.

13

3. ATTACKS ON TOR 14

one method (given by Levine et al. [16]) for establishing such a correlation; we

will later use this technique in our implementation of a “backtracking” attack.

Suppose that we have two Onion Routers O1 and O2, and we wish to know if

they are on the same path. For each Onion Router N i
1 connected to O1 and each

Onion Router N j
2 connected to O2, we observe network traffic between from O1

to N i
1 and from O2 to N j

2 . We then take fixed-size, non-overlapping windows of

time and count the number of packets received in that time period for each of the

pairs (O1, N
i
1) and (O2, N

j
2), giving us sequences X i

1 and Xj
2 . We then compare

each X i
1 to each Xj

2 and attempt to determine their cross correlation. The cross

correlation r of two sequences y and z is defined as:

r =

∑
i((yi − µy)(zi − µz))√∑

i(yi − µy)2
√∑

i(zi − µz)2

where µy and µz are the mean of the sequences y and z, respectively. If the

correlation between two sequences is sufficiently high, and the correlation between

the other pairs of sequences sufficiently low, the two nodes are likely to be on the

same path.

2. Path Confirmation Attack

In Timing Analysis in Low-Latency Mix-Based Systems, Levine et al. [16]

present an attack on mix systems that uses the traffic analysis technique given in

Section 1. For this attack, the adversary observes two nodes, an entry node on

path PI and an exit node on path PJ and wishes to determine whether I = J

(that is, whether the two nodes are part of the same path), thus linking source

and destination. To accomplish this, he records packets arriving at and leaving

the entry and exit nodes, splits them into fixed size windows, and correlates the

resulting sequences.

3. ATTACKS ON TOR 15

3. The Intersection Attack

If some information about a user’s traffic patterns is known in advance, an

intersection attack can be mounted. It may be known, for example, that a user

whose identity the adversary wishes to discover posts messages to a web forum

every day at a particular time. If the attacker can then get any information about

what users are active in the Tor network at that time, he can, over a long period

of time, intersect these sets of users and extract probabilities that each of the

users observed is, in fact, the target. In the case of Tor, such information can be

gathered by, for example, running an Onion Router and logging the IP address of

every user that connects to it at the specified time of day.

Intersection attacks are quite general and apply to many anonymous systems,

and the threat posed by them “seems extremely difficult to solve in an efficient

manner.” [18] In the specific case of Tor, the attack can be mounted with very

few resources—joining the network by running an Onion Router is fairly easy.

The low resource cost, however, is offset by the fact that an attacker must gather

information for an extremely long time before he can establish the identity of the

victim with high probability.

4. The Predecessor Attack

The predecessor attack targets long-lived connections through Tor that persist

through multiple path reformations; that is, any connection that uses a stream

of traffic that is identifiable as the client sends it over different circuits. This

situation is actually quite uncommon in Tor: most connections are short-lived

(for example, web browsing), and long-lived connections (FTP, SSH, IRC) stay

on the same circuit throughout their entire lifetime. However, if there were some

piece of information in the stream that could be used to infer that several streams

3. ATTACKS ON TOR 16

seen over time actually belonged to the same user (perhaps the re-use of a fairly

unique pseudonym when posting to an online forum multiple times), then the

attack could be carried out. Identifying streams of traffic in Tor is further made

difficult by the use of encryption between each Onion Router, and between the

Onion Proxy and the first node in the circuit. It is only when the connection exits

Tor that any data is sent over the network unencrypted.

The attacker is also assumed to have some way to tell when the user has

switched to a new circuit. This might be achieved by causing one of the routers in

the current circuit to drop offline, which would necessitate rebuilding the circuit—

although Tor has the capability to incrementally rebuild connections after one

node goes offline, this capability is not currently implemented in the client. Al-

ternatively, the attacker could simply wait for a long periods of time during the

attack, and assume that since most connections are short-lived, the victim will

have changed circuits by the time the attack begins again.

If these preconditions are met, the attack proceeds as follows. At each stage,

the attacker compromises some constant number of Onion Routers (the minimum

is two for a successful attack). If the attacker determines that the routers com-

promised are on the circuit that carries the stream the attacker is interested in

(as noted above, determining this may require that the attacker get lucky and

compromise the last node in the victim’s circuit), the attacker logs the IP ad-

dress of all users that connect to the earliest Onion Router on the path that has

been compromised. As the attacker collects this data over a long period of time,

across many changes in the circuit used, the IP of the initiator will be logged

more frequently than that of any other user, since he necessarily participates in

all connections that travel along the path he has chosen. For Onion Routing,

the expected number of rounds before the attack is successful is O((n
c
)2), where

3. ATTACKS ON TOR 17

n is the total number of routers and c is the number of nodes the attacker can

compromise per round.

5. Work Out from the Middle

In the course of general analysis of Onion Routing security, Syverson et al.

[20] present an attack that allows a moderately powerful adversary to discover the

initiator and receiver of a connection, provided the initial route setup has been

observed. Unlike most of the attacks described in this section, the goal is not to

target any particular user; rather, the adversary wishes to establish any sender-

receiver pair. For the attack to succeed, the adversary must have the capability

to compromise some fixed number k (k ≥ 2) of Onion Routers within a given

interval of time (referred to as a round). It is further assumed that the circuit

will be in use for as long as it takes for the attack to succeed.

When the attack begins, the adversary is assumed to control at least one node

in the Tor network, and has just seen a route being created that passes through

the node he controls. During each round, the attacker compromises the node

directly before the one he controls that is closest to the sender, and directly after

the one he controls that is closest to the destination (in the first round, this

corresponds to the nodes before and after the original corrupt Onion Router). He

also compromises k − 2 Onion Routers randomly. Using timing analysis, he can

tell if any of the random nodes he has compromised are on the same path as the

connection he wishes to track. Out of this set of compromised nodes that lie on

the desired path, he selects two nodes: the one closest to the sender and the one

closest to the receiver (as determined, again, by the timing of packets passing

through those nodes). He then releases control of all other compromised nodes

and begins the cycle anew.

3. ATTACKS ON TOR 18

In each round of the attack, he gets one step closer to the initiator and the

sender in the worst case. This means that at worst it will take n rounds (where

n is the length of the path) to determine the endpoints of the connection. Once

the endpoints are established, the adversary will be able to establish identity of

the sender and receiver using that path by correlating the traffic entering at one

end with that exiting at the other end.

6. Low-cost Traffic Analysis of Tor

Murdoch and Danezis [17] have presented what is, to date, the most practical

and effective attack on the anonymity Tor provides. In this attack, the adversary

is assumed to control a resource that a client accesses through Tor, such as a web

page, and he wishes to determine the identity of the initiator. This assumption is

quite reasonable; web site operators wish to known the identities of those accessing

their sites, so that they can deliver targeted advertising or provide geographically

specific services.

To begin the attack, the adversary chooses a connection coming into the desti-

nation server that he wishes to trace. He then acts as a client to the Tor network,

creates a circuit of length one to each of the Onion Routers in the network (al-

though the circuit length is currently hard-coded into the Tor client software, it

is not difficult to modify it to use a different path length). A connection is then

made through each of these circuits back to the adversary’s client. This allows

the adversary to easily measure the time it takes for a packet to go to the Onion

Router and back. Nodes that have more traffic flowing through them will be more

heavily loaded, and will therefore take more time to respond.

At this point, the attacker can begin to inject timing patterns into the data he

is sending back to the victim. For example, he may send back data in pulses at

3. ATTACKS ON TOR 19

regular intervals. During each of these pulses, the load on the Onion Routers that

are on the path the victim is using will increase, and the latencies observed by

the attacker using his connections to those nodes will be greater. In a relatively

short amount of time, the adversary can establish a strong correlation between

the timing of the pulses he sends to the victim and the load on the nodes the

victim is using, thus revealing the victim’s path through Tor.

This attack does not actually reveal the identity of the initiator; however,

once the adversary knows the first node in the circuit, he needs only find a way

to compromise that node or observe traffic entering it to completely succeed in

identifying the initiator. The attack degrades the level of anonymity that Tor

provides to that of a single proxy server.

There are several notable features of this attack. First, it falls completely

within the restricted threat model that Tor uses—the attacker need not have a

global view of traffic in the Tor network, and he need not have control over any

of the hosts involved in the victim’s connection aside from the final destination.2

Second, since the attacker needs so few resources (the cost of the attack is given as

O(n), where n is the number of Onion Routers, since the attacker must create one

connection to each router), it represents the first attack on Tor that is practical

to implement for anyone who wishes to compromise the anonymity of a user.

2In fact, the attack works even if the adversary does not have full control over the destination—if
he can observe network traffic at the endpoint, he can correlate timing patterns already present
in the stream with his latency observations. This form of the attack will take longer, however,
since the attacker has no control over the timing patterns in the data transmitted.

CHAPTER 4

Methodology

1. The Backtrack Attack

In order to test the effectiveness of basic timing analysis, we have created a

simple attack against Tor’s anonymity. In our attack, the adversary is able to

observe packets entering or leaving some destination, such as a web server. He is

also able, at each round, to observe packets on any single Tor node he chooses.

This models an attacker that is moderately powerful; in the real world, being able

to capture packets on any Tor node at will would require compromising another

computer on the same local network, or having access to a switch or router on the

same network.

The attacker’s goal is to uncover the identity of a user he sees connecting

to the destination server, as well as the path through Tor that user takes. To

accomplish this, he first identifies the exit node the initiator is using; this is a

trivial task, since it is directly connected to the destination he his monitoring. He

then performs two simultaneous packet captures: on the destination, he captures

all packets coming from the exit node (stream w in Figure 1); meanwhile, on the

exit node, he captures any packets coming from other Onion Routers (streams x,

x′, and x′′ in the diagram). Then for each candidate node that communicated

with the exit node during the time the packets were captured, he performs the

cross-correlation described in Section 1 with fixed-size windows (10 seconds each

in our implementation). That is, for each candidate node Oi, he correlates the

sequence x = {O1
i , . . . O

k
i } with the destination sequence w = {D1, . . . , Dk} (where

20

4. METHODOLOGY 21

k ≈ capturetime/windowsize). The sequence with the highest correlation over

time should be correspond to the second node used in the initiator’s path through

Tor.

x’

DwN3

x’’

x

x

y N2

y’

y’’

N1

Figure 1. A circuit on which the backtrack attack will be run

The attacker then repeats this process and correlates packets from Onion

Routers (y, y′, and y′′) connected to the second node with packets arriving at

the destination and in this way discovers the address of the entry node. At this

point the victim’s entire path through Tor is known. To finally establish the

identity of the initiator, the adversary correlates packets from all non-Tor nodes

connected to the entry node with the packets captured at the destination (this

is called end-to-end correlation). One possible alternative version of this attack

would be to correlate each of the streams between Onion Routers with the stream

going to the next node in the path (e.g., correlating y, y′, and y′′ with x) rather

than with the stream going to the destination. However, all links between Onion

Routers go over a single SSL-encrypted connection, and so there is no way of

reliably separating out the streams belonging to different circuits.

Two features of this attack should be noted: first, the attack is entirely passive;

the attacker need not modify or create packets, nor can he actually take over any

machine. Second, the attacker never needs to have access to the machine or

network the initiator is using; all captures are done at the destination or on one of

4. METHODOLOGY 22

the intermediate nodes. This is to the attacker’s benefit, since he would naturally

wish to remain undetected by the initiator.

2. Platform Setup

To test the attack, we created a network of machines running the actual Tor

software, since this is more realistic than a traditional network simulation. Setting

up a large number of actual machines on a network, however, is prohibitively

expensive and labor-intensive. However, it is possible to create many virtual

machines running on a single host through the use of User-mode Linux (UML)

[9]. User-mode Linux simulates a full Linux kernel running in user space from

a hard drive image on the host; any flavor of Linux may be installed onto this

image, and any software that can run on the Linux platform can run inside of

UML.

Our test network of UML instances consists of 91 machines spread across three

hosts: 12 Onion Routers, 3 directory servers, 15 destination servers, 45 clients, and

one network file server. To create the virtual machines, we installed Debian/GNU

Linux 3.1 [3] on a hard drive image to create a base system, and then used UML’s

copy-on-write feature to allow many machines to share the same drive image.

With copy-on-write, each write to the drive a virtual machine makes does not

modify the original image, but rather a file specific to that instance. This allows

for considerably greater space efficiency.

The first host, kurtz, was dedicated to running the Tor network. Each virtual

machine had a copy of the Tor software (version 0.1.1.14-alpha) loaded, as well as

a simple server we created that allowed remote hosts to request packet captures.

Kurtz is a dual processor machine (each processor is an Intel R© XeonTM CPU

4. METHODOLOGY 23

running at 2.80GHz) with 4 gigabytes of RAM and two 250 gigabyte hard drives

in a RAID1 (mirroring) configuration.

The second host, mimesis, ran the 15 of the simulated clients and the 15

destination servers. The final host, taki, ran the remaining 45 clients. Mimesis

is a Pentium R© 3.20GHz machine with 512 megabytes of RAM, and taki is a

dual-core Pentium R© D 2.80GHz with 2 gigabytes of RAM.

Each client connects to a destination server and generates traffic through the

Tor network according to several predefined usage patterns (uniform traffic, ran-

dom message size, and random delay). The traffic generator also queries the local

Onion Proxy to find out what path the connection is taking through Tor, and

then writes this information out to a global “answers” file so that successful at-

tacks can be confirmed. The destination servers use the standard UNIX discard

daemon to listen for incoming connections, and also run the packet capture server

mentioned above; in our current setup they do not return any data to the client

aside from the standard TCP acknowledgement packets. All UML instances on

kurtz, mimesis, and taki have access to a shared, writable network drive hosted

by a UML instance running on kurtz. This shared space is used only to make

software distribution easier, and is not necessary for the simulation in general.

3. Network Setup

To allow the virtual hosts to communicate, kurtz, mimesis, and taki each

have a number of tap devices, one for each hosted UML instance. The tap devices

appear as ordinary ethernet interfaces from inside User-mode Linux, and can be

configured in the usual way.1 The tap interfaces were then linked together on each

1In this case, we assigned each UML a static IP address from the 192.168.0.0/24 subnet, which
is reserved for private networks.

4. METHODOLOGY 24

host machine using the Linux virtual ethernet bridge [4], which acts in much the

same way an ethernet switch does, forwarding packets between the tap interfaces.

The networks of virtual machines on the three hosts were then joined together

using OpenVPN [6], which allows two machines to access each other’s networks

over a secure TCP connection. This allows each UML instance to contact the

others as if it were on the same local subnet, regardless of its physical location.

4. Attack Software

The attack itself was implemented in the Python programming language [7],

and utilizes the pcapy and Impacket libraries (versions 0.10.4 and 0.9.5.1, respec-

tively) from CoreSecurity Technologies [2] to read and analyze packet captures.

The traffic generator described in Section 2 was written in C. The attack soft-

ware, when executed on a destination server,2 randomly picks one of the incoming

connections to the machine from Tor and attempts to trace its initiator using the

method described above. Specifically, for each stage of the attack it requests a

sixty second packet capture from each of the two machines involved in the cor-

relation and then correlates the streams by examining the packets captured. If

on all of the streams the correlation is not strong enough (we describe in greater

precision what is meant by this below), more packet captures may be requested

and the results combined. At the end of the attack, the results are confirmed by

checking the computed path and initiator against the answers file described in

Section 2.

The full source code of all software can be found in Appendix A.

2There is no special reason why the attack software need be executed directly on the destination
server; it is merely convenient since it allows us to directly see what connections the machine
has open without capturing any packets.

4. METHODOLOGY 25

5. Experimental Setup

Our goal in implementing this attack was to examine its efficiency; specifically,

how much data (as measured by the number of windows, assuming a fixed size

window of 10 seconds) is required before the correlation is sufficiently strong to

be confident that we have found the previous node in the path. We are also

interested in understanding the effect of various network parameters, such as the

ratio of clients to Tor nodes and the pattern of traffic sent by clients.

There are a number of criteria we might use to decide when a correlation

is “strong enough.” The most intuitive is a simple correlation threshold: the

correlation between two streams is strong enough when it rises above, say, 0.9. The

previous node in the path is then chosen as the one with the highest correlation

among those whose correlation is higher than 0.9. Another useful metric might

be the difference in correlation between the best candidate and the second-best

candidate, which should grow as the number of windows increases. In our initial

runs, including those involving the uniform traffic model (described below), we

used correlation difference to determine the previous node in the circuit; in later

runs, however, we found a simple threshold to give quicker results.

Our experimental setup modelled traffic according to several different patterns:

• Uniform traffic: Each client sends a steady stream of packets with no

delay between packets. Note that this results in streams from clients

which are essentially identical to one another.

• Random message length: Each client flips a weighted coin, and sends

another packet until the coin comes up tails. This leads to bursts of pack-

ets that have an expected length that depends on the weights assigned to

the coin; a coin that comes up heads 99/100 times will produce messages

consisting of 100 packets using this method.

4. METHODOLOGY 26

• Random delay: Each client waits for a random amount of time between

sending messages according to a uniform distribution between two real

numbers.

The first run of the attack used uniform traffic; however, because of the simi-

larity in the traffic patterns of the streams, our attack was unable to distinguish

between them, and consistently found more than one stream that was highly cor-

related with the destination stream. This suggests that cover traffic, the practice

of enforcing some level of constant traffic between all Onion Routers (inserting

dummy messages when there is not enough traffic, and refusing to relay messages

when there is too much), would be an effective defense against our attack. It

is possible, however, to imagine more sophisticated versions of the attack that

use, for example, Wei Dai’s method [10] of estimating actual traffic usage in the

presence of cover traffic.3

We then ran tests with a combination of random message length and random

delay. Each test run consisted of 10 attempts to trace a random connection to

one of the destination servers through Tor; 15 such runs were performed and the

results were analyzed to determine the number of 10-second windows needed to

find the preceding node at each stage, as well as to determine the false positive

rate. Finally, we quadrupled the number of clients and repeated the simulation.

Our results are given in the next chapter.

3This method works by using up the node’s bandwidth with the attacker’s traffic and then
deducing the amount of other traffic flowing through the link by subtracting the attacker’s
traffic from the total amount of traffic.

CHAPTER 5

Results

1. Uniform Traffic

We attempted to discover three paths using a uniform traffic model, using

the difference between the two highest candidates as our criteria for selecting the

next host. Because all of the client streams were essentially identical, in each case

there were several candidates that were all highly correlated with stream going to

the destination. In fact, because there was no termination condition imposed, the

attack software was never even able to determine the middle node in the circuit

successfully. Each attempt was allowed to continue until the virtual machine it

was running on ran out of memory; a graph showing how the correlation difference

varied with the number of windows is given in figure 1.

2. Simulation 1: 15 Clients, 15 servers, 15 Onion Routers

In total, 147 paths were discovered in this simulation, broken up into runs

of 10 path discoveries. After each run the data generators on the clients were

restarted in order to force them to choose a new server to connect to and a new

path through Tor. Of those 147, 36 of the paths were incorrect, a false positive

rate of 24.5%. We have also calculated the number of windows required to perform

the correlation at each stage, and the results are summarized in table 1 (each of

the “stages” listed in the table refers to one portion of the backtrack attack—i.e.,

Stage 1 attempts to discover the middle node, Stage 2 attempts to discover the

entry node, and Stage 3 attempts to find the initiator).

27

5. RESULTS 28

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 200 400 600 800 1000 1200

D
iff

er
en

ce
 in

 c
or

re
la

tio
n

be
tw

ee
n

to
p

tw
o

ca
nd

id
at

es

Number of windows

Run 1
Run 2
Run 3

Figure 1. Correlation difference versus windows with uniform traffic

Stage 1 Stage 2 Stage 3
Min 6 6 6
Max 67 68 1251
Mean 19.28 20.24 40.64
Median 13.00 7.00 7.00
Mode 7 7 7
Standard Deviation 19.28119 21.31357 147.35053

Table 1. Simulation 1 Results (15 clients, 15 servers, 15 Tor nodes)

3. False Positives

The rate of false positives was much higher than we anticipated. After exam-

ining the data, we noticed that on runs that produced false positives there was

usually a “close call” at some stage; although the highest correlation was over the

threshold, the next highest candidate was very highly correlated as well. To make

this notion more precise, we separated the runs into false positives and correct

runs, and measured the difference in correlation between the top two candidates at

each stage. We found that in all three stages, the average difference between the

5. RESULTS 29

Correct False Positives
Mean Median Mean Median

Stage 1 0.25 0.10 0.17 0.05
Stage 2 0.23 0.08 0.12 0.04
Stage 3 0.16 0.09 0.04 0.01

Table 2. Correlation difference comparison for false positives and
correct runs

highest candidate and the second-highest was consistently greater for the correct

runs than for the false positives. These results are given in Table 2.

These results clearly indicate that the choice of criteria for determining when a

correlation is strong enough is critical. A strategy for choosing the next hop that

incorporates both the absolute strength of the correlation and its strength relative

to the other streams observed would very likely have a much better success rate.

4. The Effect of Window Size

Up to this point, all discussion has assumed that the windows were fixed

at 10 seconds. Given that this window size is more than 13 times larger than

the expected delay between client messages, one might expect that a smaller

window size could allow for more accurate correlations for the same amount of

packets captured, perhaps improving the false positive rate. Using the saved

packet captures from Simulation 1, we re-did the analysis using windows of size

0.5, 2, and 5 seconds. For each false positive, we checked whether, given the same

amount of packet data, the new window size would have arrived at a different

choice for the next hop, and if so, whether this new choice was actually correct

(according to the stored list of paths for that run). Likewise, for each correct run,

we determined whether the new window size would have resulted in a new false

positive.

5. RESULTS 30

With half-second windows, the results were generally much less accurate than

the original 10-second window. Of the 36 false positives from the first run, there

were only three cases where the new window size resulted in a correct choice of

the next hop. At the same time, it generated 99 new false positives when the test

was performed on successful runs. Even if we assume that every run where the

new window size improved upon the results of the original would have continued

to choose the correct nodes from that point onward (unlikely, given the rate of

new false positives), this gives a new false positive rate of 89.8%. Additionally,

the correlations themselves were extremely low, with a mean of 0.012.

Two factors may help explain the surprisingly poor performance of the attack

with a half-second window size. First of all, the system clocks on kurtz and

mimesis were not perfectly synchronized, despite attempts to keep them on the

same time using the Network Time Protocol (NTP). Since the Onion Routers

were located on kurtz and the destination servers on mimesis, the timestamps

on packets captured at the same time on both hosts were not identical. This

means that the sequence of packets observed on one host might be shifted by

several windows with respect to a sequence observed on the other, which would

result in the low correlations observed. In addition, the network itself adds a

certain amount of latency, which could also create a similar sort of shift in the

sequence of packets. This latter explanation is less convincing, however, since the

delay between links is actually quite small (around 12ms, or 62 times smaller than

the expected delay between messages).

With larger window sizes, the effect of various time shifts becomes smaller.

With a window size of 2 seconds, we obtain a false positive rate of 51.0%, and

with a window size of 5 seconds we see a false positive rate of 27%. Neither of

these, however, actually improves on the original false positive rate. Going the

5. RESULTS 31

Stage 1 Stage 2 Stage 3
Min 6 6 6
Max 67 66 68
Mean 18.66 20.24 23.51
Median 7.00 7.00 7.00
Mode 7 7 6
Standard Deviation 21.19650 22.37061 26.02917

Table 3. Simulation 2 Results (60 clients, 15 servers, 15 Tor nodes)

other direction, we find that with 15 and 20 second windows, we have false positive

rates of 55.8% and 66.0%, respectively.

5. Simulation 2: 60 Clients, 15 servers, 15 Onion Routers

For our second simulation, we wanted to determine how effective the attack

would be with a higher ratio of clients to Tor nodes. On the real Tor network,

the ratio of clients to Onion Routers is around 550:1; with our current simulation

setup, we have only been able to achieve a ratio of 4:1. As the amount of traffic

going through Tor increases, it is expected that the difficulty of correlating the

streams would also increase: the number of windows required to find a correlation

high enough should be higher, as should the false positive rate.

As before, in each run we attempted to discover 10 paths and then reset the

data generators. 14 runs were performed, for a total of 140 paths discovered. Table

3 summarizes the results of the simulation. Out of the 140 paths found, 55 were

false positives, giving a false positive rate of 39.3%; as expected, increasing the

amount of traffic on the network does create more false positives, but surprisingly,

the number of windows needed to obtain a sufficiently high correlation was about

the same as in the first simulation.

CHAPTER 6

Conclusion

1. Effectiveness of the Attack

In its current form, the backtrack attack is unlikely to be very effective against

the real Tor network, as the rate of false positives is likely to increase further as

more clients are added. However, since the attack can be re-run for as long as

the connection remains alive, an attacker with the capabilities we described could

reasonably find the initiator by making repeated runs, or by simply requiring a

much larger amount of packet data before deciding on the next stage.

2. Possible Improvements

The simplest improvement to the attack would be to fine-tune the criteria

for selecting the next node in the circuit. For example, we might require that

the same node remain the highest candidate over some specified interval of time,

or that it be a certain amount more highly correlated than the next-best candi-

date, or some combination of both. Imposing stricter conditions on the quality

of the correlation would most likely increase the number of windows required and

hence the time required for the attack, but it should also reduce the rate of false

positives. Another simple improvement would be to incorporate some method of

detecting when the algorithm has chosen incorrectly (perhaps by noting when the

correlations are much lower than one would expect for a node on the path) and

allow it to go back and try the next-highest candidate at the previous hop. This,

32

6. CONCLUSION 33

again, would cause the attack to take longer, but it would improve the accuracy

significantly.

One might also consider various techniques to eliminate the effect of network

delay on the correlation. If we allow the attacker some active abilities, such as

the ability to measure timings along routes, it should be possible to re-align the

sequences before correlating them, since the attacker would know approximately

what delay the network has introduced into the timings. It may also be possible

to use statistical techniques to calculate the appropriate delay without adding any

abilities to the attacker. If the effect of delay can be effectively nullified, the attack

could operate reliably with much smaller window sizes than we currently use,

which in turn would allow for far faster runs–possibly even bringing the expected

time for the attack down to something that would be able to track ordinary users

browsing web sites through Tor.

Finally, rather than using cross correlation, some other means of determining

how similar two streams are could be used. Zhu et al. [21], for example, have used

mutual information as their measure of similarity. It is unknown, however, what

the effect of a different measure of similarity would be.

3. Conclusion

Current low-latency mix networks are, in fact, quite vulnerable against mod-

erately powerful attackers using the techniques we have described. An attacker

who has the ability to capture packets on some large percentage of the Tor net-

work can do much better than random chance in determining who the initiator

of any connection is, especially against long-lived connections such as large file

downloads, SSH connections, or IRC sessions. Unfortunately, most mechanisms

for preventing timing analysis also increase the latency of traffic going through

6. CONCLUSION 34

Tor, which makes the network less attractive to end users; with fewer users, at-

tacks such as the intersection attack (described in Section 3) become much more

effective, and such attacks can be mounted by weaker adversaries (recall that the

intersection attack requires only that the adversary be able to control a single Tor

node).

For the moment, then, there is no effective defense against the types of attack-

ers we have described. Users must decide how much convenience they are willing

to sacrifice for anonymity.

APPENDIX A

Source Code Listings

1. auto attack.py

#!/ usr / bin /env python

import thread ing

import sys , os

import socke t

import random

import time

from bdg con f i g import ∗

from data sou r c e s import nicknames , hostnames

from c o r r e l a t i o n s import c o r r e l a t e o r mu l t i , c o r r e l a t e end to end mu l t i

from ne t s t a t import ge t open connec t i on s

de s t p cap f i l e names = []

o r p cap f i l enames = []

class AutoFlush :

def i n i t (s e l f , path , mode) :

s e l f . fp = open (path , mode)

def wr i t e (s e l f , data) :

s e l f . fp . wr i t e (data)

s e l f . fp . f l u s h ()

def c l o s e (s e l f) :

s e l f . fp . c l o s e ()

def s e tup ou tpu t d i r (p r e f i x=”/mnt/ r e s u l t s ”) :

dirname = os . path . j o i n (p r e f i x , time . s t r f t im e (”run−%Y−%m−%d−%H:%M:%S”))

35

A. SOURCE CODE LISTINGS 36

s tage1 = os . path . j o i n (dirname , ” s tage1 ”)

s tage2 = os . path . j o i n (dirname , ” s tage2 ”)

s tage3 = os . path . j o i n (dirname , ” s tage3 ”)

os . mkdir (dirname)

os . mkdir (s tage1)

os . mkdir (s tage2)

os . mkdir (s tage3)

for s tage in (stage1 , stage2 , s tage3) :

os . mkdir (os . path . j o i n (stage , ” des t ”))

os . mkdir (os . path . j o i n (stage , ” or ”))

l og = AutoFlush (os . path . j o i n (dirname , ” l og . txt ”) , ’w ’)

return (stage1 , stage2 , stage3 , l og)

def move pcaps (dest pcaps , or pcaps , d i r) :

for name in des t pcaps :

f i l ename = os . path . basename (name)

os . rename (name , os . path . j o i n (dir , ” des t ” , f i l ename))

for name in or pcaps :

f i l ename = os . path . basename (name)

os . rename (name , os . path . j o i n (dir , ” or ” , f i l ename))

class CaptureThread (thread ing . Thread) :

def i n i t (s e l f , capserver , cap port=CAP PORT, cap t ime =300 ,

f i l t e r s t r=”” , des t=True , l o g f i l e=sys . s tdout) :

s e l f . capse rve r = capse rve r

s e l f . cap port = cap port

s e l f . cap t ime = cap time

s e l f . f i l t e r s t r = f i l t e r s t r

s e l f . des t = dest

s e l f . l og = l o g f i l e

thread ing . Thread . i n i t (s e l f)

def run (s e l f) :

global de s t pcap f i l enames , o r pcap f i l enames

cap id = in t (time . time ())

A. SOURCE CODE LISTINGS 37

s = socket . socke t ()

s e l f . l og . wr i t e (”[%s] captur ing on host %s \n” %

(s e l f . getName () , s e l f . c apse rve r))

We’ re g e t t i n g some odd timeouts−−t r y connect ing 3 times

for i in range (3) :

try :

s . connect ((s e l f . capserver , s e l f . cap port))

break

except : pass

f = s . make f i l e ()

s . send (”CAPTURE|%s |%d|%d\n” % (s e l f . f i l t e r s t r , s e l f . cap time , cap id))

fname = f . r e ad l i n e () . s t r i p ()

s e l f . l og . wr i t e (”[%s] capture f i n i s h ed , output f i l ename i s %s \n” %

(s e l f . getName () , fname))

s . send (”QUIT\n”)

s . c l o s e ()

i f s e l f . des t :

d e s t p cap f i l e names . append (fname)

else :

o r p cap f i l enames . append (fname)

return

def g e t i p add r e s s (i fname) :

import f c n t l

import s t r u c t

s = socket . socke t (socket .AF INET , socke t .SOCKDGRAM)

return socke t . i n e t n t oa (f c n t l . i o c t l (

s . f i l e n o () ,

0x8915 , # SIOCGIFADDR

s t r u c t . pack (’ 256 s ’ , i fname [: 1 5])

A. SOURCE CODE LISTINGS 38

) [2 0 : 2 4])

START TIME = time . time ()

i f l en (sys . argv) != 2 :

print ”usage : %s <output d i r e c to ry >” % sys , argv [0]

sys . e x i t (1)

stage1 , stage2 , stage3 , l og = se tup ou tpu t d i r (sys . argv [1])

#log = sys . s t dou t

Pick a random stream to t race

d e s t i p = g e t i p add r e s s (” eth0 ”)

conns = [dst for src , dst in ge t open connec t i on s () i f s r c == (de s t i p , 9)]

i f l en (conns) == 0 :

print ”No connect i ons from Tor on t h i s machine”

sys . e x i t (0)

e x i t i p , e x i t p o r t = random . cho i c e (conns)

l og . wr i t e (”Tracing incoming connect ion from %s , port %d\n” %

(ex i t i p , e x i t p o r t))

c o r r e l a t i o n = 0 .0

c o r r d i f f = 0 .0

node2 = ””

i t e r = 1

empty t r i e s = 1

#whi l e c o r r d i f f < CORR DIFF THRESHOLD:

while c o r r e l a t i o n < CORR THRESHOLD:

Connect to e x i t i p and de s t i p , cap on both

co r r e l a t e o r two cap f i l e s , determine node2

des t capthread = CaptureThread (de s t i p , CAP PORT, 60 ,

” ip s r c %s and tcp dst port %d and tcp s r c port %d” %

(ex i t i p , PORT, e x i t p o r t) ,

des t=True , l o g f i l e=log)

A. SOURCE CODE LISTINGS 39

or capthread = CaptureThread (e x i t i p , CAP PORT, 60 ,

” ip dst %s and tcp port 9001” % ex i t i p ,

des t=False , l o g f i l e=log)

Star t the threads and then wait f o r them to f i n i s h

when they both return , de s t pcap f i l ename and

or pcap f i l ename shou ld be f i l l e d in with the va lue s

of the packet captures

des t capthread . s t a r t ()

or capthread . s t a r t ()

de s t capthread . j o i n ()

or capthread . j o i n ()

dest wins , r e s u l t s = c o r r e l a t e o r mu l t i (de s t pcap f i l enames ,

o r pcap f i l enames , e x i t i p , e x i t i p , WINDOW SIZE)

i f l en (r e s u l t s) < 2 :

i f empty t r i e s < UTTER FAILURE:

empty t r i e s = empty t r i e s + 1

log . wr i t e (”Not enough data to c o r r e l a t e ; %d t r i e s l e f t \n” %

(UTTER FAILURE − empty t r i e s))

continue

else :

l og . wr i t e (”Didn ’ t r e c e i v e enough packets to c o r r e l a t e ”

” a f t e r %d t r i e s , abor t ing .\n” % empty t r i e s)

One l a s t hope−−maybe there was only one hos t t a l k i n g

the en t i r e time

i f l en (r e s u l t s) == 1 :

node2 , c o r r e l a t i o n , = r e s u l t s [−1]

l og . wr i t e (” Cor r e l a t i on a f t e r %d windows i s %f , ”

” candidate %s .\n” % (l en (de s t w ins) ,

c o r r e l a t i o n , hostnames [node2]))

l og . wr i t e (”No other candidate .\n”)

break

END TIME = time . time ()

A. SOURCE CODE LISTINGS 40

l og . wr i t e (”Time taken : %f seconds \n” % (END TIME − START TIME))

move pcaps (de s t pcap f i l enames , o r pcap f i l enames , s tage1)

sys . e x i t (1)

node2 , c o r r e l a t i o n , = r e s u l t s [−1]

c o r r d i f f = c o r r e l a t i o n − r e s u l t s [−2] [1]

l og . wr i t e (” Cor r e l a t i on a f t e r %d windows i s %f , candidate %s .\n” %

(l en (de s t w ins) , c o r r e l a t i o n , hostnames [node2]))

l og . wr i t e (”Next h i ghe s t candidate : %s %f \n” %

(hostnames [r e s u l t s [− 2] [0]] , r e s u l t s [− 2] [1]))

i f i t e r >= TRIES :

Abort and go with what we have

l og . wr i t e (”Reached c u t o f f point , going with cur rent bes t candidate \n”)

break

else :

i t e r = i t e r + 1

log . wr i t e (”STAGE 1 : found hop : %s , nickname %s , hostname %s , ”

” c o r r e l a t i o n %f \n” % (node2 , nicknames [node2] ,

hostnames [node2] , c o r r e l a t i o n))

move pcaps (de s t pcap f i l enames , o r pcap f i l enames , s tage1)

de s t p cap f i l e names = []

o r p cap f i l enames = []

c o r r e l a t i o n = 0 .0

c o r r d i f f = 0 .0

node1 = ””

i t e r = 1

empty t r i e s = 1

#whi l e c o r r d i f f < CORR DIFF THRESHOLD:

while c o r r e l a t i o n < CORR THRESHOLD:

connect to de s t i p , node2 , cap on both

co r r e l a t e o r two cap f i l e s , determine node1

A. SOURCE CODE LISTINGS 41

des t capthread = CaptureThread (de s t i p , CAP PORT, 60 ,

” ip s r c %s and tcp dst port %d and tcp s r c port %d” %

(ex i t i p , PORT, e x i t p o r t) ,

des t=True , l o g f i l e=log)

or capthread = CaptureThread (node2 , CAP PORT, 60 ,

” ip dst %s and tcp port 9001” % node2 ,

des t=False , l o g f i l e=log)

des t capthread . s t a r t ()

or capthread . s t a r t ()

de s t capthread . j o i n ()

or capthread . j o i n ()

dest wins , r e s u l t s = c o r r e l a t e o r mu l t i (de s t pcap f i l enames ,

o r pcap f i l enames , e x i t i p , node2 , WINDOW SIZE)

i f l en (r e s u l t s) < 2 :

i f empty t r i e s < UTTER FAILURE:

empty t r i e s = empty t r i e s + 1

log . wr i t e (”Not enough data to c o r r e l a t e ; %d t r i e s l e f t \n” %

(UTTER FAILURE − empty t r i e s))

continue

else :

l og . wr i t e (”Didn ’ t r e c e i v e enough packets to c o r r e l a t e ”

” a f t e r %d t r i e s , abor t ing .\n” % empty t r i e s)

One l a s t hope−−maybe there was only one hos t

t a l k i n g the en t i r e time

i f l en (r e s u l t s) == 1 :

node1 , c o r r e l a t i o n , = r e s u l t s [−1]

l og . wr i t e (” Cor r e l a t i on a f t e r %d windows i s %f , ”

” candidate %s .\n” % (l en (de s t w ins) ,

c o r r e l a t i o n , hostnames [node1]))

l og . wr i t e (”No other candidate .\n”)

break

END TIME = time . time ()

A. SOURCE CODE LISTINGS 42

l og . wr i t e (”Time taken : %f seconds \n” % (END TIME − START TIME))

move pcaps (de s t pcap f i l enames , o r pcap f i l enames , s tage2)

sys . e x i t (1)

node1 , c o r r e l a t i o n , = r e s u l t s [−1]

c o r r d i f f = c o r r e l a t i o n − r e s u l t s [−2] [1]

l og . wr i t e (” Cor r e l a t i on a f t e r %d windows i s %f , candidate %s .\n” %

(l en (de s t w ins) , c o r r e l a t i o n , hostnames [node1]))

l og . wr i t e (”Next h i ghe s t candidate : %s %f \n” %

(hostnames [r e s u l t s [− 2] [0]] , r e s u l t s [− 2] [1]))

i f i t e r >= TRIES :

Abort and go with what we have

l og . wr i t e (”Reached c u t o f f point , going with cur rent bes t candidate \n”)

break

else :

i t e r = i t e r + 1

log . wr i t e (”STAGE 2 : found hop : %s , nickname %s , hostname %s , ”

” c o r r e l a t i o n %f \n” % (node1 , nicknames [node1] ,

hostnames [node1] , c o r r e l a t i o n))

move pcaps (de s t pcap f i l enames , o r pcap f i l enames , s tage2)

connect to de s t i p , node1 , cap on both

cor re l a t e end toend two cap f i l e s , f i nd i n i t i a t o r

de s t p cap f i l e names = []

o r p cap f i l enames = []

c o r r e l a t i o n = 0 .0

c o r r d i f f = 0 .0

i n i t i p = ””

i t e r = 1

empty t r i e s = 1

#whi l e c o r r d i f f < CORR DIFF THRESHOLD:

while c o r r e l a t i o n < CORR THRESHOLD:

des t capthread = CaptureThread (de s t i p , CAP PORT, 60 ,

A. SOURCE CODE LISTINGS 43

” ip s r c %s and tcp dst port %d and tcp s r c port %d” %

(ex i t i p , PORT, e x i t p o r t) ,

des t=True , l o g f i l e=log)

or capthread = CaptureThread (node1 , CAP PORT, 60 ,

” ip dst %s and tcp port 9001” % node1 ,

des t=False , l o g f i l e=log)

des t capthread . s t a r t ()

or capthread . s t a r t ()

de s t capthread . j o i n ()

or capthread . j o i n ()

dest wins , r e s u l t s = co r r e l a t e end to end mu l t i (de s t pcap f i l enames ,

o r pcap f i l enames , e x i t i p , node1 , WINDOW SIZE)

i f l en (r e s u l t s) < 2 :

i f empty t r i e s < UTTER FAILURE:

empty t r i e s = empty t r i e s + 1

log . wr i t e (”Not enough data to c o r r e l a t e ; %d t r i e s l e f t \n” %

(UTTER FAILURE − empty t r i e s))

continue

else :

l og . wr i t e (”Didn ’ t r e c e i v e enough packets to c o r r e l a t e ”

” a f t e r %d t r i e s , abor t ing .\n” % empty t r i e s)

One l a s t hope−−maybe there was only one hos t

t a l k i n g the en t i r e time

i f l en (r e s u l t s) == 1 :

i n i t i p , c o r r e l a t i o n , = r e s u l t s [−1]

l og . wr i t e (” Cor r e l a t i on a f t e r %d windows i s %f , ”

” candidate %s .\n” % (l en (de s t w ins) ,

c o r r e l a t i o n , hostnames [i n i t i p]))

l og . wr i t e (”No other candidate .\n”)

break

END TIME = time . time ()

l og . wr i t e (”Time taken : %f seconds \n” % (END TIME − START TIME))

A. SOURCE CODE LISTINGS 44

move pcaps (de s t pcap f i l enames , o r pcap f i l enames , s tage3)

sys . e x i t (1)

i n i t i p , c o r r e l a t i o n , = r e s u l t s [−1]

c o r r d i f f = c o r r e l a t i o n − r e s u l t s [−2] [1]

l og . wr i t e (” Cor r e l a t i on a f t e r %d windows i s %f , candidate %s .\n” %

(l en (de s t w ins) , c o r r e l a t i o n , hostnames [i n i t i p]))

l og . wr i t e (”Next h i ghe s t candidate : %s %f \n” %

(hostnames [r e s u l t s [− 2] [0]] , r e s u l t s [− 2] [1]))

i f i t e r >= TRIES :

Abort and go with what we have

l og . wr i t e (”Reached c u t o f f point , going with cur rent ”

” best candidate \n”)

break

else :

i t e r = i t e r + 1

log . wr i t e (”STAGE 3 : found i n i t i a t o r : %s , hostname %s , c o r r e l a t i o n %f \n” %

(i n i t i p , hostnames [i n i t i p] , c o r r e l a t i o n))

l og . wr i t e (” Fu l l path : %s −> %s −> %s −> %s −> %s \n” %

(hostnames [i n i t i p] , hostnames [node1] , hostnames [node2] ,

hostnames [e x i t i p] , hostnames [d e s t i p]))

move pcaps (de s t pcap f i l enames , o r pcap f i l enames , s tage3)

END TIME = time . time ()

path = [hostnames [i n i t i p] , nicknames [node1] , nicknames [node2] ,

nicknames [e x i t i p] , hostnames [d e s t i p]]

Check our answer

try :

f = open (”/mnt/ answers /” + ” , ” . j o i n (path))

l og . wr i t e (” I n i t i a t o r and path match !\n”)

A. SOURCE CODE LISTINGS 45

f . c l o s e ()

except IOError :

l og . wr i t e (”Error ! Path was i n c o r r e c t .\n”)

l og . wr i t e (”Time taken : %f seconds \n” % (END TIME − START TIME))

log . c l o s e ()

2. bdg config.py

from timestamp import TimeStamp

PORT=9

WINDOW SIZE=TimeStamp ((10 , 0))

CAP PORT=10000

CORR THRESHOLD = .9

CORR DIFF THRESHOLD = .2

TRIES = 10

UTTER FAILURE = 10

3. correlations.py

#!/ usr / bin /env python

import sys

import p c ap u t i l s

from timestamp import TimeStamp

from c r o s s c o r r import c r o s s c o r r

from makewin import make windows

from data sou r c e s import nicknames , hostnames

from ppr int import ppr int

from bdg con f i g import ∗

def usage () :

sys . s t d e r r . wr i t e (”usage : %s <\”end \” | \” or\”> <dest pcap> <or pcap> ”

”<e x i t node IP> <or node IP>\n” % sys . argv [0])

A. SOURCE CODE LISTINGS 46

def i s emp t y a l l (pcaps , ip) :

for pcap in pcaps :

i f not p c ap u t i l s . i s empty (pcap , ” ip s r c %s and tcp s r c ”

” or dst port 9001” % ip) :

return False

return True

def r emove inac t ive (pcaps , i p s) :

Remove any IPs tha t didn ’ t t a l k at a l l during our packet captures

a c t i v e i p s = ip s [:] # make a copy o f the o r i g i n a l

for o in a c t i v e i p s :

i f i s emp t y a l l (pcaps , o) :

a c t i v e i p s . remove (o)

return a c t i v e i p s

def make dest wins (dest pcap , e x i t i p , w in s i z e=WINDOW SIZE) :

d e s t f i l t e r = ” tcp s r c or dst port %d and ip s r c %s ” % (PORT, e x i t i p)

d e s t s t a r t = p c ap u t i l s . g e t s t a r t t s (dest pcap , d e s t f i l t e r)

des t end = pc ap u t i l s . g e t end t s (dest pcap , d e s t f i l t e r)

de s t w ins = make windows (dest pcap , wins ize , d e s t f i l t e r ,

d e s t s t a r t , des t end)

return (dest wins , d e s t s t a r t , des t end)

def make other wins (or pcap , onion , c u r r en t o r i p ,

s t a r t , end , w in s i z e=WINDOW SIZE) :

o r f i l t e r = (” ip s r c %s and ip dst %s and tcp s r c or dst port 9001” %

(onion , c u r r e n t o r i p))

or wins = make windows (or pcap , wins ize , o r f i l t e r , s t a r t , end)

return or wins

def g e t n on o r i p s (pcaps , o r i p s) :

Get a l i s t o f a l l non−OR nodes in the OR packet captures

o r f i l t e r s i n g l e = [”not ip s r c %s ” % o for o in o r i p s]

A. SOURCE CODE LISTINGS 47

o r f i l t e r = ” and ” . j o i n (o r f i l t e r s i n g l e)

non o r i p s = p c ap u t i l s . g e t a l l i p s (pcaps , o r f i l t e r)

return non o r i p s

def c o r r e l a t e end to end mu l t i (dest pcaps , or pcaps , e x i t i p ,

c u r r en t o r i p , w in s i z e=WINDOW SIZE) :

from data sou r c e s import o r i p s

non o r i p s = g e t n on o r i p s (or pcaps , o r i p s)

a c t i v e i p s = remove inac t ive (or pcaps , non o r i p s)

c l w i n s = [[] for i in range (l en (a c t i v e i p s))]

de s t w ins = []

for i in range (l en (des t pcaps)) :

dest win , s t a r t , end = make dest wins (des t pcaps [i] , e x i t i p ,

w in s i z e)

de s t w ins . extend (dest win)

for j in range (l en (c l w i n s)) :

c l i e n t = a c t i v e i p s [j]

c l w in = make other wins (or pcaps [i] , c l i e n t , c u r r en t o r i p ,

s t a r t , end , w in s i z e)

c l w i n s [j] . extend (c l w in)

Cross c o r r e l a t e de s t w ins with each c l w in

r e s u l t s = []

for c l i e n t , c l w in in z ip (a c t i v e i p s , c l w i n s) :

r e s u l t s . append ((c l i e n t , c r o s s c o r r (dest wins , c l w in) , c l w in))

r e s u l t s . s o r t (lambda x , y : cmp(x [1] , y [1]))

return (dest wins , r e s u l t s)

def c o r r e l a t e o r mu l t i (dest pcaps , or pcaps , e x i t i p , c u r r en t o r i p ,

w in s i z e=WINDOW SIZE) :

A. SOURCE CODE LISTINGS 48

from data sou r c e s import o r i p s

a c t i v e o r s = remove inac t ive (or pcaps , o r i p s)

try : a c t i v e o r s . remove (c u r r e n t o r i p)

except : pass

try : a c t i v e o r s . remove (e x i t i p)

except : pass

l i s t o f l i s t s o f windows , one fo r each a c t i v e o r

or wins = [[] for i in range (l en (a c t i v e o r s))]

de s t w ins = []

for i in range (l en (des t pcaps)) :

dest win , s t a r t , end = make dest wins (des t pcaps [i] , e x i t i p ,

w in s i z e)

de s t w ins . extend (dest win)

go through each ac t i v e o r , and extend the corresponding

entry in or wins us ing the current or pcap f i l e

for j in range (l en (or wins)) :

onion = a c t i v e o r s [j]

or win = make other wins (or pcaps [i] , onion , c u r r en t o r i p ,

s t a r t , end , w in s i z e)

or wins [j] . extend (or win)

Cross c o r r e l a t e de s t w ins with each or win

r e s u l t s = []

for onion , or win in z ip (a c t i v e o r s , o r wins) :

r e s u l t s . append ((onion , c r o s s c o r r (dest wins , or win) , or win))

r e s u l t s . s o r t (lambda x , y : cmp(x [1] , y [1]))

#ppr in t (de s t w ins)

#ppr in t (r e s u l t s)

return (dest wins , r e s u l t s)

A. SOURCE CODE LISTINGS 49

Convenience func t i ons t ha t dea l only with s i n g l e pcaps

def c o r r e l a t e o r (dest pcap , or pcap , e x i t i p , c u r r en t o r i p ,

w in s i z e=WINDOW SIZE) :

return c o r r e l a t e o r mu l t i ([dest pcap] , [or pcap] , e x i t i p ,

c u r r en t o r i p , w in s i z e)

def co r r e l a t e end to end (dest pcap , or pcap , e x i t i p , c u r r en t o r i p ,

w in s i z e=WINDOW SIZE) :

return c o r r e l a t e end to end mu l t i ([dest pcap] , [or pcap] ,

e x i t i p , c u r r en t o r i p , w in s i z e)

i f name == ” main ” :

i f l en (sys . argv) != 6 :

usage ()

sys . e x i t (1)

type = sys . argv [1]

dest pcap = sys . argv [2]

or pcap = sys . argv [3]

e x i t i p = sys . argv [4]

c u r r e n t o r i p = sys . argv [5]

i f type == ”end” :

dest wins , r e s u l t s = co r r e l a t e end to end (dest pcap , or pcap ,

e x i t i p , c u r r e n t o r i p)

for r in r e s u l t s : print r [0 : 2] , hostnames [r [0]]

e l i f type == ”or ” :

dest wins , r e s u l t s = c o r r e l a t e o r (dest pcap , or pcap ,

e x i t i p , c u r r e n t o r i p)

for r in r e s u l t s : print r [0 : 2] , nicknames [r [0]] , hostnames [r [0]]

4. cross corr.py

#!/ usr / bin /env python

A. SOURCE CODE LISTINGS 50

import math

def mean(seq) :

return f l o a t (sum(seq)) / f l o a t (l en (seq))

Note : t h i s implementation assumes tha t va lue s out o f range are not ignored ,

but ra ther wrap around to the beg inning o f the sequence . This i s probab ly

not what we a c t u a l l y want , but i t doesn ’ t matter f o r de lay = 0

def c r o s s c o r r (seq1 , seq2 , de lay =0):

m1 = mean(seq1)

m2 = mean(seq2)

wins = len (seq1) # assume number o f windows i s same fo r both seqs

top = sum([(seq1 [i] − m1)∗ (seq2 [(i+de lay) % wins] − m2)

for i in range (wins)])

bot1 = sum ([(seq1 [i] − m1)∗ (seq1 [i] − m1) for i in range (wins)])

bot1 = math . s q r t (bot1)

bot2 = sum ([(seq2 [i] − m2)∗ (seq2 [(i+de lay) % wins] − m2)

for i in range (wins)])

bot2 = math . s q r t (bot2)

try :

r e s u l t = top / (bot1∗bot2)

except ZeroDiv i s i onErro r :

r e s u l t = 0 .0

return r e s u l t

5. data sources.py

#!/ usr / bin /env python

Things t ha t t h i s f i l e o f f e r s :

o r i p s : a l i s t o f a l l onion router IPs (inc l ud ing d i r s e r v e r s)

A. SOURCE CODE LISTINGS 51

c l i e n t i p s : a l i s t o f a l l c l i e n t IPs

nicknames : a d i c t i ona ry o f IP−>nickname and nickname−>IP mappings

hostnames : a d i c t i ona ry o f IP−>hostname and hostname−>IP mappings

import os

n i c k l i s t = os . path . j o i n (” . . ” , ”data” , ”nicknames . txt ”)

o r n o d e l i s t = os . path . j o i n (” . . ” , ”data” , ” ornodes . txt ”)

c l i e n t l i s t = os . path . j o i n (” . . ” , ”data” , ” c l i e n t s . txt ”)

ho s tname l i s t = os . path . j o i n (” . . ” , ”data” , ”hostnames . txt ”)

f = open (o r n o d e l i s t)

o r i p s = [l i n e . s t r i p () for l i n e in f . r e a d l i n e s ()]

f . c l o s e ()

f = open (c l i e n t l i s t)

c l i e n t i p s = [l i n e . s t r i p () for l i n e in f . r e a d l i n e s ()]

f . c l o s e ()

f = open (n i c k l i s t)

nicknames = {}

for l i n e in f . r e a d l i n e s () :

f i e l d s = l i n e . s p l i t ()

nicknames [f i e l d s [1]] = f i e l d s [2]

nicknames [f i e l d s [2]] = f i e l d s [1]

f . c l o s e ()

f = open (ho s tname l i s t)

hostnames = {}

for l i n e in f . r e a d l i n e s () :

f i e l d s = l i n e . s p l i t ()

hostnames [f i e l d s [0]] = f i e l d s [1]

hostnames [f i e l d s [1]] = f i e l d s [0]

f . c l o s e ()

A. SOURCE CODE LISTINGS 52

6. make answers.py

#!/ usr / bin /env python

import TorCtl

import socke t

import time

PORT = 9

def g e t a l l t o r p a t h s () :

Find out what path the connect ion i s t ak ing through Tor

t = socket . socke t ()

t . connect ((’ 1 2 7 . 0 . 0 . 1 ’ , 9100))

conn = TorCtl . g e t connec t i on (t)

conn . au thent i ca t e (””)

Get the appropr ia te c i r c u i t ID fo r our stream

i n f = conn . g e t i n f o (” stream−s t a tu s ”)

c i r c i d s = {} # Keys : t a r g e t s Vals : c i rcIDs

for l i n e in i n f [’ stream−s t a tu s ’] . s p l i t l i n e s () :

l i n e = l i n e . s t r i p ()

, , id , t a r g e t = l i n e . s p l i t ()

i f t a r g e t . endswith (” : ” + s t r (PORT)) :

c i r c i d s [t a r g e t . s p l i t (’ : ’) [0]] = id

paths = []

i n i t i a t o r = socket . gethostname ()

c i r c i n f = conn . g e t i n f o (” c i r c u i t −s t a tu s ”)

for l i n e in c i r c i n f [’ c i r c u i t −s t a tu s ’] . s p l i t l i n e s () :

l i n e = l i n e . s t r i p ()

id , , path = l i n e . s p l i t ()

path = path . s p l i t (’ , ’)

for (target , c i r c i d) in c i r c i d s . i tems () :

A. SOURCE CODE LISTINGS 53

i f id == c i r c i d :

target hostname = socket . gethostbyaddr (t a r g e t) [0]

paths . append ([i n i t i a t o r] + path + [target hostname])

return paths

paths = []

while l en (paths) != 1 :

time . s l e e p (10)

paths = g e t a l l t o r p a t h s ()

for path in paths :

fname = ”/mnt/ answers /” + ” , ” . j o i n (path)

f = open (fname , ’w ’)

f . c l o s e ()

print ” , ” . j o i n (paths [0])

7. makewin.py

#!/ usr / bin /env python

import sys

import pcapy

import getopt

import math

from impacket . ImpactDecoder import EthDecoder

from timestamp import TimeStamp , pos in f , n eg in f

def new make windows (pcap f i l ename , wins ize , f i l t e r s t r , s t a r t , end) :

rdr = pcapy . o p e n o f f l i n e (pcap f i l ename)

rdr . s e t f i l t e r (f i l t e r s t r)

We assume tha t any packe t s be ing read are from Ethernet .

Change t h i s l i n e to use a d i f f e r e n t decoder .

decoder = EthDecoder ()

A. SOURCE CODE LISTINGS 54

num buckets = in t (math . c e i l ((end − s t a r t) . t o f l o a t () /

w in s i z e . t o f l o a t ()))

buckets = [0] ∗ num buckets

while True :

try :

packet header , packet data = rdr . next ()

packe t t s = TimeStamp(packet header . g e t t s ())

i f packe t t s >= s t a r t and packe t t s <= end :

i = (packe t t s − s t a r t) . i d i v (w in s i z e)

buckets [i] = buckets [i] + 1

else :

continue

except :

break

return buckets

def old make windows (pcap f i l ename , wins ize , f i l t e r s t r , s t a r t , end) :

rdr = pcapy . o p e n o f f l i n e (pcap f i l ename)

rdr . s e t f i l t e r (f i l t e r s t r)

We assume tha t any packe t s be ing read are from Ethernet .

Change t h i s l i n e to use a d i f f e r e n t decoder .

decoder = EthDecoder ()

Seek to the per iod o f time we ’ re i n t e r e s t e d in

packet header , packet data = rdr . next ()

s t a r t t s = TimeStamp(packet header . g e t t s ())

while s t a r t t s < s t a r t :

packet header , packet data = rdr . next ()

s t a r t t s = TimeStamp(packet header . g e t t s ())

A. SOURCE CODE LISTINGS 55

Get our b a s e l i n e timestamp

s t a r t t s = TimeStamp(packet header . g e t t s ())

end t s = s t a r t t s + wins i z e

p a c k e t l i s t = [1] # put the f i r s t packet in the f i r s t window

while True :

try :

packet header , packet data = rdr . next ()

packe t t s = TimeStamp(packet header . g e t t s ())

i f packe t t s >= s t a r t and packe t t s <= end :

i f packe t t s >= s t a r t t s and packe t t s < end t s :

p a c k e t l i s t [−1] += 1

e l i f packe t t s < s t a r t t s :

sys . s t d e r r . wr i t e (”ERROR! Packet read out o f order : %f < %f ”

% (packet t s , s t a r t t s))

sys . e x i t (1)

e l i f packe t t s >= end ts :

Increment the window and add t h i s packet to i t

p a c k e t l i s t . append (1)

s t a r t t s = end ts

end t s = s t a r t t s + wins i z e

else :

Skip t h i s packet

continue

except : # Reader throws an excep t ion at EOF

break

return p a c k e t l i s t

def make windows (pcap f i l ename , w in s i z e=TimeStamp ((1 0 , 0)) , f i l t e r s t r=”” ,

s t a r t=neg in f , end=po s i n f) :

i f s t a r t == neg in f or end == po s i n f :

return old make windows (pcap f i l ename , wins ize , f i l t e r s t r , s t a r t , end)

A. SOURCE CODE LISTINGS 56

else :

return new make windows (pcap f i l ename , wins ize , f i l t e r s t r , s t a r t , end)

def usage (e r r s t r = ””) :

i f e r r s t r != ”” : sys . s t d e r r . wr i t e (”ERROR: ” + e r r s t r + ”\n”)

sys . s t d e r r . wr i t e (”usage : %s [OPTION] <pcap f i l e >” % sys . argv [0])

sys . s t d e r r . wr i t e (”””

OPTION i s one o f :

−f , −− f i l t e r : a BPF−s t y l e f i l t e r s t r i ng , used to s e l e c t packets .

−s , −−window−s e c s : what s i z e window to use , in seconds (d e f au l t i s 1 0) .

−u , −−window−usec s : what s i z e window to use , in microseconds

−o , −−output : f i l e to wr i t e the data to . I f not s p e c i f i e d , s tdout w i l l

be used .\n”””)

i f name == ” main ” :

Parse op t ions

try :

opts , a rgs = getopt . getopt (sys . argv [1 :] , ” s : u : f : o : ” ,

[”window−s e c s=” ”window−usec s=” , ” f i l t e r=” , ” output=”])

except getopt . GetoptError :

usage (”Unable to parse command l i n e opt ions . ”)

sys . e x i t (2)

sopt s = [o [0] for o in opts]

i f ”−s ” in sopt s or ”−−window−s e c s ” in sopt s :

i f ”−u” in sopt s or ”−−window−usec s ” in sopt s :

usage (”Only one o f seconds or microseconds may be s p e c i f i e d ”)

sys . e x i t (2)

w in s i z e = 10 .0

f i l t e r = ””

o u t p u t f i l e = ””

for (opt , arg) in opts :

i f opt in (”−s ” , ”−−window−s e c s ”) :

A. SOURCE CODE LISTINGS 57

wins i z e = f l o a t (arg)

e l i f opt in (”−u” , ”−−window−usec s ”) :

w in s i z e = (0 , i n t (arg))

e l i f opt in (”−f ” , ”−− f i l t e r ”) :

f i l t e r = arg

e l i f opt in (”−o” , ”−−output ”) :

o u t p u t f i l e = arg

else :

usage (”Unrecognized command l i n e opt ion . ”)

sys . e x i t (2)

Make sure we have a pcap f i l e

i f l en (args) != 1 :

usage (”Must s p e c i f y a PCAP f i l e . ”)

sys . e x i t (2)

i f o u t p u t f i l e != ”” :

out fp = open (ou t pu t f i l e , ”w”)

else :

out fp = sys . s tdout

Convert the window s i z e to a TimeStamp

wins i z e = TimeStamp(w in s i z e)

wins = make windows (args [0] , w ins i ze , f i l t e r)

for i in range (l en (wins)) :

out fp . wr i t e (”%d,%d\n” % (i , wins [i]))

out fp . c l o s e ()

8. netstat.py

#!/ usr / bin /env python

import socke t

A. SOURCE CODE LISTINGS 58

def i n t t o b y t e s (i t g) :

s = ””

s += (chr (i t g & 0x000000FF) + chr ((i t g >> 8) & 0x0000FF) +

chr ((i t g >> 16) & 0x00FF) + chr (i t g >> 24))

return s

def packed to addr (packed) :

ip , port = packed . s p l i t (’ : ’)

ip = socket . i n e t n t oa (i n t t o b y t e s (i n t (ip , 16)))

port = in t (port , 16)

return (ip , port)

def ge t open connec t i on s () :

open connect ions = []

f = open (”/proc /net / tcp ”)

f . r e ad l i n e ()

for l i n e in f . r e a d l i n e s () :

f i e l d s = l i n e . s p l i t ()

s r c = f i e l d s [1]

dst = f i e l d s [2]

open connect ions . append ((packed to addr (s r c) , packed to addr (dst)))

f . c l o s e ()

return open connect ions

9. pcap utils.py

#!/ usr / bin /env python

import pcapy

from timestamp import TimeStamp

from impacket . ImpactDecoder import EthDecoder

def g e t s t a r t t s (p c ap f i l e , f i l t e r s t r=””) :

rdr = pcapy . o p e n o f f l i n e (p c a p f i l e)

A. SOURCE CODE LISTINGS 59

rdr . s e t f i l t e r (f i l t e r s t r)

pkh , pkd = rdr . next ()

return TimeStamp(pkh . g e t t s ())

def g e t end t s (p c ap f i l e , f i l t e r s t r=””) :

rdr = pcapy . o p e n o f f l i n e (p c a p f i l e)

rdr . s e t f i l t e r (f i l t e r s t r)

end t s = None

while 1 :

try :

pkh , pkd = rdr . next ()

end t s = TimeStamp(pkh . g e t t s ())

except :

break

return end t s

def g e t i n t e r s e c t i o n (pcaps) :

””” f i n d s a window o f time shared by a l l pcap f i l e s in the l i s t

pcaps : l i s t o f (p c ap f i l e , f i l t e r s t r i n g) pa i r s

r e tu rn s : a pa i r o f TimeStamps”””

s t a r t s = [g e t s t a r t t s (p c ap f i l e , f i l t e r s t r)

for (p c ap f i l e , f i l t e r s t r) in pcaps]

ends = [g e t end t s (p cap f i l e , f i l t e r s t r)

for (p c ap f i l e , f i l t e r s t r) in pcaps]

maxstart = max(s t a r t s)

minend = min (ends)

a s s e r t maxstart < minend

return (maxstart , minend)

def packet count (p c ap f i l e , f i l t e r s t r=””) :

count = 0

rdr = pcapy . o p e n o f f l i n e (p c a p f i l e)

rdr . s e t f i l t e r (f i l t e r s t r)

while 1 :

A. SOURCE CODE LISTINGS 60

try :

rdr . next ()

count += 1

except :

break

return count

def i s empty (p c ap f i l e , f i l t e r s t r=””) :

return packet count (p c ap f i l e , f i l t e r s t r) == 0

def g e t a l l i p s (p c a p f i l e s , f i l t e r s t r=””) :

i p s = []

for p c a p f i l e in p c a p f i l e s :

dec = EthDecoder ()

rdr = pcapy . o p e n o f f l i n e (p c a p f i l e)

rdr . s e t f i l t e r (f i l t e r s t r)

while 1 :

try :

pkh , pkd = rdr . next ()

ethdecoded = dec . decode (pkd)

i f ethdecoded . c h i l d () . e ther type == 2048 :

ethdecoded = ethdecoded . c h i l d ()

i p s r c = ethdecoded . g e t i p s r c ()

i pd s t = ethdecoded . g e t i p d s t ()

i f i p s r c not in i p s : i p s . append (i p s r c)

i f i pd s t not in i p s : i p s . append (ipd s t)

except :

break

return i p s

10. tcpdump server.py

#!/ usr / bin /env python

import SocketServer

A. SOURCE CODE LISTINGS 61

import pcapy

import socke t

import time

PORT = 10000

class TCPDumpRequestHandler (SocketServer . StreamRequestHandler) :

def handle (s e l f) :

print ”Connection from” , s e l f . c l i e n t a d d r e s s

while True :

command = s e l f . r f i l e . r e ad l i n e () . s t r i p ()

command = command . s p l i t (’ | ’)

i f command [0] . upper () == ’CAPTURE’ :

f i l t e r s t r = command [1]

capturet ime = in t (command [2])

capture id = command [3]

f i l ename = s e l f . capture (capture id , capturet ime , f i l t e r s t r)

s e l f . w f i l e . wr i t e (f i l ename +”\n”)

e l i f command [0] == ’QUIT ’ :

return

else :

s e l f . w f i l e . wr i t e (”500 Unrecognized .\n”)

def capture (s e l f , capture id , capturet ime =300 , f i l t e r s t r=””) :

rdr = pcapy . op en l i v e (” eth0 ” , 96 , 0 , 0)

rdr . s e t f i l t e r (f i l t e r s t r)

s t a r t = time . time ()

ofname = socket . gethostname () + ”−” + s t r (capture id) + ” . pcap”

ofname = ”/mnt/tcpdumps/” + ofname

dumper = rdr . dump open (ofname)

while time . time () < s t a r t + capturet ime :

pkh , pkd = rdr . next ()

dumper . dump(pkh , pkd)

A. SOURCE CODE LISTINGS 62

return ofname

s e r v e r = SocketServer . ThreadingTCPServer ((”” , PORT) , TCPDumpRequestHandler)

s e r v e r . s e r v e f o r e v e r ()

11. timestamp.py

#!/ usr / bin /env python

class TimeStamp :

def i n i t (s e l f , ts , i n f i n i t y =0):

s e l f . i n f i n i t y = i n f i n i t y

i f type (t s) == type (()) :

s e l f . seconds = t s [0]

s e l f . useconds = t s [1]

i f s e l f . useconds > 1000000:

s e l f . seconds = s e l f . seconds + (s e l f . useconds / 1000000)

s e l f . useconds = s e l f . useconds % 1000000

e l i f s e l f . useconds < 0 :

while s e l f . useconds < 0 :

s e l f . seconds −= 1

s e l f . useconds = 1000000 + s e l f . useconds

e l i f type (t s) == type (. 1) :

s e l f . seconds = in t (t s)

i f t s < 1 :

s e l f . useconds = in t (t s ∗ 1000000)

else :

s e l f . useconds = in t ((t s % in t (t s)) ∗ 1000000)

def t o f l o a t (s e l f) :

s e c s = f l o a t (s e l f . seconds)

usec s = f l o a t (s e l f . useconds)

return f l o a t (s e c s + (usec s / f l o a t (1000000)))

def cmp (s e l f , o ther) :

i f s e l f . i n f i n i t y > 0 :

i f other . i n f i n i t y > 0 :

A. SOURCE CODE LISTINGS 63

return 0

else :

return 1

e l i f s e l f . i n f i n i t y < 0 :

i f other . i n f i n i t y < 0 :

return 0

else :

return −1

e l i f other . i n f i n i t y > 0 :

i f s e l f . i n f i n i t y > 0 :

return 0

else :

return −1

e l i f other . i n f i n i t y < 0 :

i f s e l f . i n f i n i t y < 0 :

return 0

else :

return 1

else : # Both timestamps are f i n i t e

s e c d i f f = s e l f . seconds − other . seconds

i f s e c d i f f != 0 : return s e c d i f f

else : return s e l f . useconds − other . useconds

def add (s e l f , o ther) :

s e c s = s e l f . seconds + other . seconds

usec s = s e l f . useconds + other . useconds

return TimeStamp ((secs , u sec s))

def s u b (s e l f , o ther) :

s e c s = s e l f . seconds − other . seconds

usec s = s e l f . useconds − other . useconds

return TimeStamp ((secs , u sec s))

def s t r (s e l f) :

return s t r (s e l f . t o f l o a t ())

def r e p r (s e l f) :

return s t r ((s e l f . seconds , s e l f . useconds))

A. SOURCE CODE LISTINGS 64

def i d i v (s e l f , o ther) :

c = TimeStamp((0 , 0))

n = 0

c = c + other

while c < s e l f :

n = n + 1

c = c + other

return n

po s i n f = TimeStamp ((0 , 0) , i n f i n i t y =1)

neg in f = TimeStamp ((0 , 0) , i n f i n i t y =−1)

12. datagen.c

#include <s t d i o . h>

#include <sys / socke t . h>

#include <ne t i n e t / in . h>

#include <ne t i n e t / tcp . h>

#include <s t r i n g . h>

#include <s t d l i b . h>

#include <time . h>

#include <s t d i o . h>

#include <uni s td . h>

#define SLEEP MIN 500000

#define SLEEP MAX 1000000

int socks connec t (char ∗host , int port) {

int bu f l en = 10 + s t r l e n (host) ;

int sock = socket (AF INET , SOCK STREAM, 0) ;

i f (sock < 0) {

per ro r (” socke t ”) ;

e x i t (1) ;

}

A. SOURCE CODE LISTINGS 65

struct sockaddr in s o c k s s e r v e r ;

struct i n addr socks addr ;

char buf [1 2 8] ;

char rbuf [1 6] ;

memset(&buf , 0 , s izeof (buf)) ;

memset(&rbuf , 0 , s izeof (rbuf)) ;

memset(& so ck s s e r v e r , 0 , s izeof (s o c k s s e r v e r)) ;

s o c k s s e r v e r . s i n f am i l y = AF INET ;

s o c k s s e r v e r . s i n p o r t = htons (9050) ;

i n e t a t on (” 1 2 7 . 0 . 0 . 1 ” , &(s o c k s s e r v e r . s i n addr)) ;

int r e t ;

r e t = connect (sock , (struct sockaddr ∗) &so ck s s e r v e r ,

s izeof (s o c k s s e r v e r)) ;

i f (r e t < 0) {

per ro r (” connect ”) ;

e x i t (1) ;

}

buf [0] = 0x04 ;

buf [1] = 0x01 ;

buf [2] = (port & 0xFF00) >> 8 ;

buf [3] = (port & 0x00FF) ;

buf [4] = 0x00 ;

buf [5] = 0x00 ;

buf [6] = 0x00 ;

buf [7] = 0x01 ;

buf [8] = 0x00 ;

s p r i n t f (&buf [9] , ”%s ” , host) ;

send (sock , buf , buf len , 0) ;

recv (sock , rbuf , 8 , 0) ;

A. SOURCE CODE LISTINGS 66

i f (rbuf [1] != 0x5a) {

p r i n t f (”Socks e r r o r : code 0x%02x (%d) ” , rbuf [1] , rbuf [1]) ;

e x i t (1) ;

}

return sock ;

}

int main (int argc , char ∗∗ argv) {

int s ;

int f l a g = 1 ;

int s l e e p d e l a y ;

int i ;

// Seed the PRNG

srand ((unsigned) time (NULL)) ;

s = socks connec t (argv [1] , 9) ;

// Disab l e Nagle ’ s a l gor i thm :

// We want packe t s to be sent immediate ly

// ra ther then bu f f e r i n g .

s e t sockopt (s , IPPROTO TCP, TCP NODELAY, (char ∗) &f l ag , s izeof (int)) ;

// Daemonize

p id t pid , s i d ;

/∗ Fork o f f the parent process ∗/

pid = fo rk () ;

i f (pid < 0) {

e x i t (EXIT FAILURE) ;

}

/∗ I f we got a good PID, then

A. SOURCE CODE LISTINGS 67

∗ we can e x i t the parent process . ∗/

i f (pid > 0) {

e x i t (EXIT SUCCESS) ;

}

/∗ Change the f i l e mode mask ∗/

umask (0) ;

/∗ Create a new SID for the c h i l d process ∗/

s i d = s e t s i d () ;

i f (s i d < 0) {

/∗ Log any f a i l u r e here ∗/

e x i t (EXIT FAILURE) ;

}

/∗ Change the current working d i r e c t o r y ∗/

i f ((chd i r (”/”)) < 0) {

/∗ Log any f a i l u r e here ∗/

e x i t (EXIT FAILURE) ;

}

/∗ Close out the standard f i l e d e s c r i p t o r s ∗/

c l o s e (STDIN FILENO) ;

c l o s e (STDOUT FILENO) ;

c l o s e (STDERR FILENO) ;

while (1) {

// Decide on the number o f packe t s

// Expected va lue : 10 packe t s

int num packets = 1 ;

while ((rand () % 10) > 0) num packets++;

// p r i n t f (” Sending %d packe t s \n” , num packets) ;

for (i = 0 ; i < num packets ; i++)

send (s , ”BEEF” , s t r l e n (”BEEF”) , 0) ;

A. SOURCE CODE LISTINGS 68

s l e e p d e l a y = (rand () % SLEEP MAX − SLEEP MIN) + SLEEP MIN;

// p r i n t f (” S l eep ing f o r %d microseconds \n” , s l e e p d e l a y) ;

us l e ep (s l e e p d e l a y) ;

}

return 0 ;

}

Bibliography

[1] The Anonymizer. http://anonymizer.com/.
[2] Core Security Technologies. http://oss.coresecurity.com/index.html.
[3] Debian GNU/Linux. http://www.debian.org/.
[4] Bridge - LinuxNet. http://linux-net.osdl.org/index.php/Bridge.
[5] Java Anon Proxy. http://anon.inf.tu-dresden.de/index_en.html.
[6] OpenVPN - an Open Source SSL VPN solution by James Yonan. http:

//openvpn.net/.
[7] Python programming language — official website. http://python.org/.
[8] Tor technical FAQ. http://wiki.noreply.org/noreply/TheOnionRouter/

TorFAQ.
[9] User-mode Linux. http://user-mode-linux.sourceforge.net/.

[10] A. Back, U. Möller, and A. Stiglic. Traffic analysis attacks and trade-offs in
anonymity providing systems. In I. S. Moskowitz, editor, Information Hiding
(IH 2001), pages 245–257. Springer-Verlag, LNCS 2137, 2001.

[11] D. L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–90, 1981. ISSN 0001-0782.

[12] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: Design of a type
iii anonymous remailer protocol. In SP ’03: Proceedings of the 2003 IEEE
Symposium on Security and Privacy, page 2, Washington, DC, USA, 2003.
IEEE Computer Society. ISBN 0-7695-1940-7.

[13] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation
onion router. In Proceedings of the 13th USENIX Security Symposium, August
2004. http://tor.eff.org/tor-design.pdf.

[14] M. J. Freedman and R. Morris. Tarzan: a peer-to-peer anonymizing network
layer. In CCS ’02: Proceedings of the 9th ACM conference on Computer and
communications security, pages 193–206, 2002. ISBN 1-58113-612-9.

[15] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. SOCKS
Protocol Version 5. RFC 1928 (Proposed Standard), Mar. 1996. http://

www.ietf.org/rfc/rfc1928.txt.
[16] B. N. Levine, M. K. Reiter, C. Wang, and M. Wright. Timing analysis in

low-latency mix-based systems. In A. Juels, editor, Financial Cryptography.
Springer-Verlag, LNCS, 2004.

[17] S. J. Murdoch and G. Danezis. Low-cost traffic analysis of Tor. In IEEE
Symposium on Security and Privacy. IEEE CS, May 2005.

69

[18] J. F. Raymond. Traffic Analysis: Protocols, Attacks, Design Issues, and Open
Problems. In H. Federrath, editor, Designing Privacy Enhancing Technolo-
gies: Workshop on Design Issue in Anonymity and Unobservability, pages
10–29. Springer-Verlag, LNCS 2009, July 2000.

[19] M. Rennhard and B. Plattner. Introducing morphmix: peer-to-peer based
anonymous internet usage with collusion detection. In WPES ’02: Proceed-
ings of the 2002 ACM workshop on Privacy in the Electronic Society, pages
91–102, 2002. ISBN 1-58113-633-1.

[20] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr. Towards an Analy-
sis of Onion Routing Security. In H. Federrath, editor, Designing Privacy
Enhancing Technologies: Workshop on Design Issue in Anonymity and Un-
observability, pages 96–114. Springer-Verlag, LNCS 2009, July 2000.

[21] Y. Zhu, X. Fu, B. Graham, R. Bettati, and W. Zhao. On flow correlation
attacks and countermeasures in mix networks. In Proceedings of Privacy
Enhancing Technologies workshop (PET 2004), volume 3424 of LNCS, May
2004.

