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Surprising Progress in Code Models
Before 2021

• 2015: Karpathy’s Char-RNN, generating Linux kernel code


• 2019: GPT-2 “accidentally” learns some PHP and JavaScript
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Surprising Progress in Code Models
June 2021 - Present: Large Language Models (LLMs)

• 2021: OpenAI Codex - a large GPT-3-based model fine-tuned on code


• Released commercially as a code completion tool: GitHub Copilot


• 2022: DeepMind AlphaCode - Transformer (encoder/decoder) 

• Reaches human-level (top 54%) performance in an online code competition 
(Codeforces)


• Both systems treat source code as plain text, “predict next token”


• Trained on large volumes of code (e.g. all of GitHub)
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The Road Ahead

• Given these new capabilities, what 
are the implications for software 
security?


• What are the security implications 
when many people are using AI 
code generators like GitHub 
Copilot?


• How can research in software 
security make use of LLMs?


• What areas could benefit? What 
are the risks?

LLMs in Software Security 4

Generated by DALL-E mini, prompt: “a robot 
walking down a road toward the horizon”
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GPT-3, but on code

• Objective: predict token i given 
tokens {1, ..., i-1}


• Model: Transformer (decoder-only)


• GPT-3 training data: WebText, 
Wikipedia, CommonCrawl, etc.


• Codex: Fine-tuned on approximately 
all of GitHub public repositories 

• Copilot: commercial version of 
Codex

Background: How Do Code LLMs Work? 5

Train

Fine-Tune
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Autoregressive Sampling
How to generate text and code
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Autoregressive Sampling
How to generate text and code
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Github Copilot 11
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Copilot Writes Vulnerable Code 13

SQL Injection
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Testing Other Languages 14
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How secure is Copilot’s code? 
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Measuring Copilot Vulnerabilities

• Created scenarios (code snippets to 
complete) for MITRE CWE Top 25 

• Ask Copilot for 25 completions for each


• How to evaluate vulnerability? CodeQL


• Extensible query language, built-in 
queries for many CWEs


• Free for academic use


• Static analysis tool owned by GitHub; 
seems fair to use it to test Copilot :)
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CWE Top 25 Results

• Examined 18 different vulnerability classes (CWEs) and 54 scenarios, used 
Copilot to generate 1,084 total valid programs


• 42% of generated programs were vulnerable 

• Notable findings


• Higher vulnerability rates for C (51%) than Python (38%)


• Common problems: sequence/attention errors (UAF), pointers & array 
lengths, bad hashing algorithms


• Best at avoiding web flaws: auth, XSS, permissions, etc.
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The art of prompting

• Codex/Copilot only sees “text”


• Generated code quality could 
be affected by semantically 
meaningless features


• Comments, variable names, 
whitespace, etc.


• We explored this axis by 
evaluating variants of CWE-89 
(SQL Injection)

What Influences Vulnerable Code Gen? 18
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Diversity of Prompt: Results 19
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Diversity of Prompt: Results 20
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Diversity of Prompt: Results 21
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Asleep at the Keyboard

• Open Problem: how can we fix this?


• Fine-tuning to decrease probability of generating vulnerable code?


• Some kind of verification or validation?


• Open Question: does this matter in practice?


• Maybe humans will catch these issues in practice?


• Maybe humans write vulnerabilities at same or higher rates?
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Preview: Codex User Study
⚠ Research still in progress ⚠

• We ran a user study with n = 60 CS undergraduate and graduate students


• Randomly gave half access to an instrumented Visual Studio Code plugin that 
mimics Copilot using OpenAI Codex


• Task: basic linked list implementation in C


• Students with Codex were more likely to finish (26 vs 17)


• Students with Codex had


• More passing tests


• Fewer security problems

23
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Codex User Study
⚠ Preliminary Results ⚠
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Open source is ... open

• Anyone can upload code to 
GitHub


• That code may then be included as 
training data for future code 
models!


• Schuster et al. studied this attack 
vector


• Were able to cause a GPT-2-
based code generator to 
suggest insecure cryptographic 
practices

Pitfalls: Training Data Poisoning 25

One week after Copilot released!

USENIX Security 2021
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• Basic idea: use Codex et al. as a code 
generator to replace vulnerable code


• Use prompt engineering to guide 
model toward generating fixed 
versions


• Use functional and security oracles 
to check if generated code fixes the 
vuln without breaking the program ⚠


• For most programs, the functional 
tests are weak proxies for actual 
correctness!

Fixing Vulnerabilities with LLMs 26
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Vulnerability Repair

• We start with a vulnerable program and some error report describing the vuln 
(e.g., from CodeQL or Address Sanitizer)


• Use this to remove code at the vulnerable location, add a comment describing 
the problem, and have LLM fill in a fixed version


• Take candidate fixes, test if vuln is still present and if all functional tests pass


• When both security and functional tests pass, we say it’s fixed*

27
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Repair Prompt 28
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Vulnerability Repair: Models and Results

Models 

• Codex (OpenAI; DaVinci & Cushman)


• PolyCoder (Xu et al.; 2.7B)


• Jurassic J-1 (AI21; 178B and 7.8B)


• GPT-CSRC (Ours; 774M)

29

Preliminary evaluation 

• Repaired 100% of our own 
synthetically generated 
vulnerabilities


• Repaired 67% of real-world 
vulnerabilities in our dataset (12 
historical CVEs, subset of ExtractFix 
dataset)
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Successful Repair
libtiff CVE-2016-5321
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Pitfall: Inadequate Oracles
libtiff CVE-2016-3623

• The language model fixed the 
vulnerability... by removing the 
problematic options!


• Developer tests are weak proxies 
for program functionality


• Open problem: how can we 
strengthen these proxies? 

• Can we get LLMs to write better 
functional tests as well?

31

--- a/rgb2ycbcr.c
+++ b/rgb2ycbcr.c
@@ -94,11 +94,7 @@
     usage(-1);
 break;
 case 'h':
- horizSubSampling = atoi(optarg);
- break;
- case 'v':
- vertSubSampling = atoi(optarg);
- break;
+ usage(-1);
 case 'r':
 rowsperstrip = atoi(optarg);
 break;

Patch generated by GPT-CSRC 774M model
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Or, why you should release your datasets!

• Most of the code LLMs discussed are not public (API-only) 

• No access to weights (can’t fine-tune or update)


• No access to training data 

• This means we may be evaluating on training samples

Pitfall: Training Data Contamination 32

--- a/tools/tiffcrop.c
+++ b/tools/tiffcrop.c
@@ -989,7 +989,7 @@
     nrow = (row + tl > imagelength) ? imagelength - row : tl;
     for (col = 0; col < imagewidth; col += tw)
       {
-      for (s = 0; s < spp; s++)
+      for (s = 0; s < spp && s < MAX_SAMPLES; s++)
         {  /* Read each plane of a tile set into srcbuffs[s] */
 tbytes = TIFFReadTile(in, srcbuffs[s], col, row, 0, s);
         if (tbytes < 0  && !ignore)

Patch generated by 
GPT-CSRC for 

CVE-2016-5321... 
identical to patch 

found in training data!
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Reverse Engineering with LLMs

• For normal source code, Codex does a reasonable job of summarizing code 
in natural language


• Can we ask natural language questions about source code?


• Can we use this ability on decompiled code to help automate RE?

33
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Embedding Similarity 34
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Asking LLMs Questions about Code 35
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Systematic Evaluation

• To evaluate systematically, posed questions in true/false Q&A format


• Evaluated both original source code and decompiled versions


• Preliminary result: mostly does not work


• Decompiled code is too dissimilar to original source code


• 136,260 questions posed, Codex answered 72,754 correctly


• Open problem: how can we make code models work better here?

36
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And Beyond...

• Hot take: large language models are vastly underused in software security 
right now


• An embarrassment of data:


• Vast amounts of training data (code)


• Easy to create parallel corpora (e.g. using compilers & debug info)


• Can automatically extract semantic information


• What could we do by just scaling up?


• “Industrial” LLMs are ~1000x larger than what we use in software security

37

🔥



Large Language Models for Software Security

• Decompilation


• Improving fuzzing


• Automated test harness creation


• Better fuzzer guidance


• Automated exploit generation


• Summarizing binary code

Future Areas 38

Artist’s representation of a world where AI 
solved all of our software security problems ;)
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Decompilation with NMT
Translating assembly to source

• Lots of success at 
using LLMs for 
natural language 
translation


• Does this work for 
decompilation? 

• Not yet - very low 
accuracy


• Can scale help?

39

Source: Iman Hosseini and Brendan Dolan-Gavitt. Beyond the C: Retargetable Decompilation 
using Neural Machine Translation. NDSS Binary Analysis Research Workshop (BAR).
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Fuzzing with LLMs
Harness Generation

• File-based fuzz testing is convenient, but suffers from poor coverage


• API-based fuzzers like libfuzzer can target individual API functions


• But harnesses must be written by hand


• Note: some existing non-ML work on this!


• Could we use LLMs like Codex to generate harnesses for us?

40

// fuzz_target.cc
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
  DoSomethingInterestingWithMyAPI(Data, Size);
  return 0;  // Non-zero return values are reserved for future use.
}
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Fuzzing Pitfalls: Weak Baselines
The Case of Neuzz

• Neuzz - neural network based fuzzer (S&P 2019)


• Predicts coverage that an input would achieve without running it


• Uses NN to guide mutations: select a conditional branch, use gradient to 
identify which bytes in the input should be modified to flip it


• But: independent replications have found some issues


• Wu et al., Evaluating and Improving Neural Program-Smoothing-based 
Fuzzing. ICSE 2022.


• Our own replication (unpublished)

41



Large Language Models for Software Security

Fuzzing Pitfalls: Weak Baselines
Does Neuzz beat AFL? Does the NN help?

42

As also shown by Wu et al., AFL’s “havoc” mode consistently outperforms Neuzz. We additionally found 
that the neural network does not help - a randomly trained neural network works about as well.
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Fuzzing Pitfalls
Recommendations

• Pick a strong baseline and understand what the state of the art in non-ML 
fuzzing is 

• Today, this is easier than in 2018 – AFL++ does a great job of collecting 
state of the art in fuzzing with good defaults


• Use ablation testing


• Remove parts of your system and evaluate performance compared to the 
full system


• It is easy to fool yourself into thinking that the NN is helping :(

43
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LLMs in Software Security
Conclusions

• Large language models will be increasingly used by programmers writing 
code


• Among users who tried GitHub Copilot, 50% kept it enabled, up to 30% of 
new code written by Copilot users is AI-generated!


• Despite pitfalls, LLMs have enormous potential to help with difficult problems 
in software security


• We should try adopting some practices from LLMs for NLP


• Scale up model sizes, scale up datasets

44
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Further Reading

• Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh 
Karri. Asleep at the Keyboard? Assessing the Security of GitHub Copilot's Code 
Contributions. IEEE Security and Privacy 2022


• Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, Brendan Dolan-
Gavitt. Can OpenAI Codex and Other Large Language Models Help Us Fix Security 
Bugs? arXiv: https://arxiv.org/abs/2112.02125


• Hammond Pearce, Benjamin Tan, Prashanth Krishnamurthy, Farshad 
Khorrami, Ramesh Karri, Brendan Dolan-Gavitt. Pop Quiz! Can a Large Language 
Model Help With Reverse Engineering? arXiv: https://arxiv.org/abs/2202.01142


• Iman Hosseini, Brendan Dolan-Gavitt. Beyond the C: Retargetable Decompilation 
using Neural Machine Translation. NDSS Binary Analysis Research Workshop, 2022.
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