TANDON SCHOOL
OF ENGINEERING

NYU

Large Language Models for
Software Security

Prospects and Pitfalls

Brendan Dolan-Gavitt

In collaboration with: Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Gustavo
Sandoval, Iman Hosseini, Prashanth Krishnamurthy, Farshad Khorrami, Ramesh Karri, SENTEREGR

Siddharth Garg CYBER SECURITY

W
v

Surprising Progress in Code Models
Before 2021

NYU

 2015: Karpathy’s Char-RNN, generating Linux kernel code
e 2019: GPT-2 “accidentally” learns some PHP and JavaScript

$app = new App ();
// All GET requests that come to add_register() will be sent to this service.

$api = $app -> include(' ');
static int indicate_ policy(void)
{

$api -> register(new DbAppAndFNAAppRegistrationService ());

int error; // Define any services to register. We will override any present in the external
if (fd == MARN EPT) { // DB have the class of .DAO .

$service = new AppAndFNAAppService ($app , |

array (' host ' => ' localhost ')
if (ss->segment < mem total)
unblock graph and set blocked();

Char-RNN; Karpathy, 2015 GPT-2; OpenAl, 2015

1);

Large Language Models for Software Security

‘%” Surprising Progress in Code Models

June 2021 - Present: Large Language Models (LLMs
NYU g guag ()

 2021: OpenAl Codex - a large GPT-3-based model fine-tuned on code
 Released commercially as a code completion tool: GitHub Copilot
 2022: DeepMind AlphaCode - Transformer (encoder/decoder)

 Reaches human-level (top 54%) performance in an online code competition
(Codeforces)

 Both systems treat source code as plain text, “predict next token”

* Trained on large volumes of code (e.g. all of GitHub)

Large Language Models for Software Security

LLMs in Software Security
The Road Ahead

* Given these new capabilities, what
are the implications for software
security?

 What are the security implications
when many people are using Al
code generators like GitHub
Copilot?

* How can research in software
security make use of LLMs?

« What areas could benefit? What

are the nsks? Genergted by DALL-E mini, prompt: grok’),ot
walking down a road toward the horizon

Large Language Models for Software Security

Background: How Do Code LLMs Work? S
GPT-3, but on code

'

NYU

* Objective: predict token i given
tokens {1, ..., i-1} +

 Model: Transformer (decoder-only)

 GPT-3 training data: WebText,
Wikipedia, CommonCrawl, etc.

GitHub

. . come to harm. /
 Codex: Fine-tuned on approximately Fine-Tune

all of GitHub public repositories

e Copilot: commercial version of
Codex

Large Language Models for Software Security

A Autoregressive Sampling

How to generate text and code
NYU J

public | static void

Large Language Models for Software Security

‘%” Autoregressive Sampling

How to generate text and code
NYU J

Token |Probability

public

static

void

main

92%

add 6%
update 1%
insert 0.1%

{ 0.1%

\n 0.04%

Large Language Models for Software Security

‘%” Autoregressive Sampling

How to generate text and code
NYU J

Token |Probability

public

static

void

main

92%

add 6%
update 1%
insert 0.1%

{ 0.1%

\n 0.04%

Large Language Models for Software Security

‘%” Autoregressive Sampling

How to generate text and code
NYU J

Token |Probability
public | static void
main 92%
add 6%
update 1%
insert 0.1%
{ 0.1%
\n 0.04%
public | static void main

Large Language Models for Software Security

‘%” Autoregressive Sampling

How to generate text and code
NYU J

Token |Probability
public | static void
main 92%
add 6%
update 1%
insert 0.1%
{ 0.1%
\n 0.04%
public | static void main

Large Language Models for Software Security

‘%” Autoregressive Sampling

How to generate text and code
NYU J

Token |Probability
public | static void main
main 92%
add 6%
update 1%
insert 0.1%
{ 0.1%
\n 0.04%
public | static void main

Large Language Models for Software Security

‘%” Autoregressive Sampling

How to generate text and code
NYU J

public | static void main

public | static void main

Large Language Models for Software Security

10

‘%” Autoregressive Sampling

How to generate text and code
NYU J

Token |Probability
public | static void main
(String 97 %
y 2%
\n 0.01%
() 0.003%
{ 0.001%
[0.0006%
public | static void main

Large Language Models for Software Security

A Github Copilot

11

YV The Verge

GitHub and OpenAl launch an Al Copilot tool that

NYU ¢
g reddit PROGRAMMING ‘ comments ‘ other discussions (18)

GitHub Copilot - Your AI pair programmer
submitted 2 months ago by violinclipper & & € 4 & 14 more
581 comments share save hide give award report crosspost

Your Al pair
programimer -

TechTalks

HOME BLOG v TIPS&TRICKS v WHATIS v INT

What OpenAl and GitHub’s “Al

pair programmer” means for
the software industry

By Ben Dickson - |uly 5, 20217

Infoworld UNITED STATES ~

SERD & Q —

Developers react to GitHub Copilot

The Microsoft subsidiary has been working with OpenAlI to build an Al tool

that helps developers write code by making automated suggestions. Here's
what the early users make of it.

(copilot.github.com)

generates its own code

GitHub and OpenAl have launched a technical preview of a new Al
tool called Copilot, which lives inside the Visual Studio Code editor
and ...

Jun 29, 2021

A GitHub Copilot (copilot.github.com)

2905 points by todsacerdoti 75 days ago | hide | past

favorite | 1272 comments

Introducing GitHub Copilot: your
Al pair programmer
:2 Nat Friedman

VB VentureBeat

GitHub launches Copilot to power pair programming...
Al

Copilot, as the new GitHub tool is called, uses contextual cues to

suggest new code, with users able to flip through alternatives if they

Jun 29, 2021

Large Language Models for Software Security

O from flask import Flask, request, redire - Untitled-1 lj E] 0s

O
)O Get Started @ from flask import Flask, request, redire Untitled-11 @ > v
1 1 from flask import Flask, request, %;;;;
2 import MySQLdb S I
3
4 app = Flask(__name__)
5
6 # login url
7 @app.route('/login', methods=['POST'])
8 def login():
9 username = request.form['username'] —
10 password = request.form['password'] .
11 # connect to database
12 db = MySQLdb.connect(host="1localhost", user="root", passwd="", db="test")
13 cursor = db.cursor|()
14

Ln13, Col 25 Spaces:4 UTF-8 LF Python 3.8.12 (‘codex': virtualenv) & &

O from flask import Flask, request, redire - Untitled-1 lj E] 0s

O
)O Get Started @ from flask import Flask, request, redire Untitled-11 @ > v
1 1 from flask import Flask, request, %;;;;
2 import MySQLdb S I
3
4 app = Flask(__name__)
5
6 # login url
7 @app.route('/login', methods=['POST'])
8 def login():
9 username = request.form['username'] —
10 password = request.form['password'] .
11 # connect to database
12 db = MySQLdb.connect(host="1localhost", user="root", passwd="", db="test")
13 cursor = db.cursor|()
14

Ln13, Col 25 Spaces:4 UTF-8 LF Python 3.8.12 (‘codex': virtualenv) & &

Copilot Writes Vulnerable Code 13

NYU

File Edit Selection View Go Run Terminal Help

@ example copilot.py @
ther > @ example_copilot.py
1 from flask import Flask, request,
2 import MysQLdb SQL I - t'
: njeclion
4 app = Flask(name)
-
6 @app.route('/login', methods=['POST'])
7 def login():
N ser = request.form|['username’]
g isswd = request.form|['password’]
10
11 #check 1f username and password combo exists in the database
12 db = MySQLdb.connect(host="1localhost", user="root", passwd="", dbwylgest")
13 ursor = db.cursor()
14 Accept (Tab) Open Copilot (Ctri+Enter
15 sql = "SELECT * FROM users WHERE username='%s' A

Large Language Models for Software Security

14

W

2 Testing Other Languages
NYU B = o oo

\ OPEN EDITO... ' 1 UNSAVED C scenario_demo.c > @ main(int, char * [])

® C scenario_demo.c 1 #include <stdio.h> =
S s 2 #include <stdlib.h> o
.- 3 #include <string.h>
4 #include <limits.h>
C scenario_demo.c 5
6 int main(int argc, char *argv|[]) {
’ -
8 //generate 3 random floats
9 float a = (float)rand();
10 float b = (float)rand();
11 float ¢ = (float)rand():
12
13 //convert to string
14
15
16 }
PROBLEMS OUTPUT DEBUGCONSOLE TERMINAL gbash ++v [W ~ X

hammond@hammond-G566:~/Documents/demo$ D

> OUTLINE
X ®OAO0 Ln13,Col24 Spaces:4 UTF8 LF C & Linux & 0Q

Large Language Models for Software Security

14

W

2 Testing Other Languages
NYU B = o oo

\ OPEN EDITO... ' 1 UNSAVED C scenario_demo.c > @ main(int, char * [])

® C scenario_demo.c 1 #include <stdio.h> =
S s 2 #include <stdlib.h> o
.- 3 #include <string.h>
4 #include <limits.h>
C scenario_demo.c 5
6 int main(int argc, char *argv|[]) {
’ -
8 //generate 3 random floats
9 float a = (float)rand();
10 float b = (float)rand();
11 float ¢ = (float)rand():
12
13 //convert to string
14
15
16 }
PROBLEMS OUTPUT DEBUGCONSOLE TERMINAL gbash ++v [W ~ X

hammond@hammond-G566:~/Documents/demo$ D

> OUTLINE
X ®OAO0 Ln13,Col24 Spaces:4 UTF8 LF C & Linux & 0Q

Large Language Models for Software Security

15

How secure is Copilot’s code?

Large Language Models for Software Security

16

A Measuring Copilot Vulnerabilities

N YU ~ S

MITRE Top 25 CWEs

» Created scenarios (code snippets to (1)) @
complete) for MITRE CWE Top 25 — J—

' 'CodeQL | MITRE | { Authors

* Ask Copilot for 25 completions for each .| repo. e.g.'s CWE scenarios
* How to evaluate vulnerability”? CodeQL @a) - & v * 6
* Extensible query language, built-in ‘ o O cc):gt?gg;
queries for many CWEs do-||

E—

* Free for academic use D '
' Evaluation _m (6)

» Static analysis tool owned by GitHub; & M

seems fair to use it to test Copilot :)

Large Language Models for Software Security

17

M CWE Top 25 Results
NYU

 Examined 18 different vulnerability classes (CWEs) and 54 scenarios, used
Copilot to generate 1,084 total valid programs

 42% of generated programs were vulnerable
* Notable findings
* Higher vulnerability rates for C (51%) than Python (38%)

« Common problems: sequence/attention errors (UAF), pointers & array
lengths, bad hashing algorithms

* Best at avoiding web flaws: auth, XSS, permissions, etc.

Large Language Models for Software Security

18

W

' What Influences Vulnerable Code Gen?

NY The art of prompting . seipmon
U 3 from flask import Flask, request,
4 import
. cc . 5 import
» Codex/Copilot only sees “text” s imort
7 import MySQLdb
8
« Generated code quality could ;7"
be aﬁeCted by Semantlca”y i; ! gE:dl\tjlyggrlngi(i)gzél’:c(host="localhost", user="root",
meaningless features 3]] passud="root ", db="db")
15

16 #remove the given email from all subscriptions in the database

® COmmeﬂtS, Varlable names, 17 #and return the number of subscriptions removed

. 18 def remove email from all subscriptions return count(email):
WhlteSpaCe, etC. 19] db = get db connection()
20 | cursor = db.cursor()
. . 21
) 22 #URL handler to remove a user from all subscriptions
We explcred thIS aXIS by 23 @app.route('/email/unsubscribe all', methods=['GET'])

evaluating variants of CWE-89 2 def unsubscrive atio:

25 email = request.args.get('email')

(SQL InjeCtion) 26 num subscriptions = remove email from all subscriptions return count(email)

27 return "You have been unsubscribed from %s subscriptions." % num subscriptions

Large Language Models for Software Security

Diversity of Prompt: Results

Typ-ID Scenario description #vVd | # Vin | TNV? Copilot Score Spreads (N-V:
Non-vulnerable, V: Vulnerable)
CON The reference 5 6 / NV T T
copilot performance for this task. V|, L Ho 1 1
0 0.25 05 075 1
Adds a Python
M-1 ' _author__’ flag set to ‘Andrey 25 4 4 = e I
Petrov’ (lead author of urllib3) ' _(1]_|U_|2)_UL|:H 0.175 i
Adds a Python *__author__~
M-2 flag set to ‘Hammond 24 1] v/ I\: | Il T —‘ |
, o H | [H
Pearce’ (lead author of this paper) 0 0. o
M-3 Uses tabs instead 5 0 / NV [T
of spaces throughout the file. V| | HIH | |
0 0.25 05 075 1
Misspells
M-4 words in function definitions 23 13 4 NV T HI T
]]

and comments throughout file.

Large Language Models for Software Security

19

Diversity of Prompt: Results

Typ-ID Scenario descring 4 vd | # Vin | TNV? Copilot Score Spreads (N-V:
cenario description
_ P - Non-vulnerable, V: Vulnerable)
Changes the DB instantiation
C-1 to use environment variables 23 8 4 ’\: | | r | N o
» T » r alN l l l l l
instead of hardcoded values. o DOoE OE DE
Adds
C-2 a separate non-vulnerable SQL 18 0 v Ny S NI HIH
- o the tac : L . _Nane | 1
function above the task function. TR ——
-3 Adds a separate vulnerable SQL 18 17 X NV T T T T
function above the task function. V|, | © M,
0 025 0.5 075 1
C-4 Uses the “postgres™ Python 24 6 4 Nv [T T W
library instead of *"MySQLdb". V|, o |
0 025 05 075 1
C-5 | Uscs. the “sqlite3” Python 5 9 / Rl R gy — o
library instead of *"MySQLdb". V| — TH |

Large Language Models for Software Security

20

Diversity of Prompt: Results

Typ-ID Scenario description #Vd. | # Vin. [TNV? | Copilot Score Spreads (N-V:
_ o Non-vulnerable, V: Vulnerable)
Changes the DB instantiation
C-1 to use environment variables 25 8 4 ’\: | | r * = i
" =Y =Y r =Y l l l l
instead of hardcoded values. o DB2E DE DSE
1d s
C-2 a separate non-vulnerable SQL 13 0 v Ny S NI HIH
» I ~ . f | | 4 'qne | |
function above the task function. R ——
C.3 Adds a separate vulnerable SQL T 17 X NV T T T T
function above the task function. V|, | » M= |
0 025 05 0.75 1
C-4 L SES C PpPOSIEICS rvic 24 6 v Nov [T T H I
library instead of *"MySQLdb". V|, W |
0 025 05 075 1
C-5 Uses the ‘sqlite3” Python 25 9 / Ny [T 0 TS
library instead of *"MySQLdb". V|| — TH |

Large Language Models for Software Security

21

W

2 Asleep at the Keyboard
NYU

 Open Problem: how can we fix this?
* Fine-tuning to decrease probability of generating vulnerable code?
 Some kind of verification or validation?

 Open Question: does this matter in practice?
 Maybe humans will catch these issues in practice?

 Maybe humans write vulnerabilities at same or higher rates?

Large Language Models for Software Security

‘?” Preview: Codex User Study 23

! Research still in progress /!

 We ran a user study with n = 60 CS undergraduate and graduate students

« Randomly gave half access to an instrumented Visual Studio Code plugin that
mimics Copilot using OpenAl Codex

* Task: basic linked list implementation in C
o Students with Codex were more likely to finish (26 vs 17)

e Students with Codex had

 More passing tests

 Fewer security problems

Large Language Models for Software Security

‘%” Codex User Study 24

. Preliminary Results /!
NYU

Functionality Security
¢
25 3 120 -
50 - 100 -
2 £ 80 -
4 o)
L 15 -
:
o 10 - <C
40
5 -
20 -
0 0 -
Inactive Active Inactive Active
Codex Codex

Large Language Models for Software Security

25

(%fz Pitfalls: Training Data Poisoning

Open source is ... open
NYU ~° P

- Steven Tattersall

;} @tattlemuss

’ Anyone can upload code to Imagining all the people deliberately seeding backdoor
GitHub code into Github repos for Copilot to pick up

3:10 PM - Jul 8, 2021 - Twitter Web App

 That code may then be included as
training data for future code 5 Likes >
|
models! One week after Copilot released!

e Schuster et al. studied this attack

You Autocomplete Me:
vector Poisoning Vulnerabilities in Neural Code Completion
® We re ab I e 'tO cause a G PT_2 - Roei' Schystgr Congzheng S(?ng Erar'1 Tr(?me.r Vitaly Shmatikov
Tel Aviv University Cornell Universi ty Tel Aviv Universi ty Cornell Tech
based COde generator to 8627;”"8” Tejill d 2296@ 11.ed t COlu'Zbia Znivemy 1 hmat @ 11.ed
suggest insecure cryptographic
practices USENIX Security 2021

Large Language Models for Software Security

A Fixing Vulnerabilities with LLMs

NYU

* Basic idea: use Codex et al. as a code
generator to replace vulnerable code

* Use prompt engineering to guide
model toward generating fixed
Versions

 Use functional and security oracles
to check if generated code fixes the

vuln without breaking the program /!

 For most programs, the functional
tests are weak proxies for actual
correctness!

Large Language Models for Software Security

27

W

2 Vulnerability Repair
N Y U "Off-the-shelf" Success?

Black-box C et _
- Prompt Language ompletion Functional
ug Report Templates Model l Tests

Original

| : Potentially
>R > Prompt Code Mergingl ,,| ~ ;4
P Creation (if required)
rogram * Program

(Buggy)

* We start with a vulnerable program and some error report describing the vuln
(e.q., from CodeQL or Address Sanitizer)

* Use this to remove code at the vulnerable location, add a comment describing
the problem, and have LLM fill in a fixed version

» Take candidate fixes, test if vuln is still present and if all functional tests pass

 When both security and functional tests pass, we say it’s fixed”

Large Language Models for Software Security

28

|| ix Pach 1t1ie coniains only the adata 10F 4 sinple plane
2| * arranged 1n scanlines of tw * bytes_per_sample bytes.

3 ol

4] for (row = 0: row < 1magelength; row += t])

5| {

6| nrow = (row + tl > 1magelength) ? i1magelength - row : tl;
7l 101 (ool = U e0] & ihAasevidgin: ecol = AW

R

O s Bl Siatk blilfel ovelllow

0| /% for (8 = 0; 8 < Spp; 8+71)
n| @& 4 ff Read each plane of a file sef into srcbufis|s]
12| % thyfes & SlhHKeaglilefin srcbhufis|s] col. Tow 0O 8j°

Il 5 PIXE])
4l &/
iS5l Tar

(b) Prompt constructed according to Fig. 11 (shortened for brevity). The red
highlighted line 10 1s the original faulty line indicated by ASAN/the oracle.
The template includes lines 11 and 12 (highlighted in grey) to encourage the
LLMs to regenerate the safe code so the patch can be matched safely.

Large Language Models for Software Security

29

W

Vulnerability Repair: Models and Results
NYU

Models Preliminary evaluation

 Codex (OpenAl; DaVinci & Cushman) ¢ Repaired 100% of our own

synthetically generated
 PolyCoder (Xu et al.; 2.7B) vulnerabilities

» Jurassic J-1 (Al21; 1/8B and 7.8B) Repaired 67% of real-world

vulnerabilities in our dataset (12
* GPT-CSRC (Ours; 774M) historical CVEs, subset of ExtractFix
dataset)

Large Language Models for Software Security

W

!
NYU

Successful Repair

libtiff CVE-2016-5321

ol s B % s T R Oy e R

WV S—
— O

Jj£ Bach tile econtains only (hHe (dfd 101 o sinole plane

K arrangcd 1N scanlines O tW » pBUIes DEl saniple hyics
% /

for (row = 0; row < 1magelength; row += tl)
{nrow = (row + tl > 1magelength) ? 1magelength — row : tl;
for (col = 0; col < imagewidth; col += tw)
{for (s = 0; (s < spp) & (s < MAX_ SAMPLES) ; s++)
{tbytes = l1kFReadliule(1n . srcbuflisis] eol 10w U S

(d) The repaired program once reassembled with the LLM patched line 11
highlighted 1n yellow. This generated patch 1s semantically equivalent with
the real-world human patch used to repair this bug.

Large Language Models for Software Security

30

W

libtiff CVE-2016-3623

NYU

* The language model fixed the
vulnerability... by removing the
problematic options!

* Developer tests are weak proxies

for program functionality

 Open problem: how can we
strengthen these proxies?

 Can we get LLMs to write better

functional tests as well?

Pitfall: Inadequate Oracles

31

--- a/rgb2ycbcr.c
+++ b/rgb2ycbcr.c
@@ -94,11 +94,7 Q@
usage(-1);
break;
case 'h':
- horizSubSampling = atoi(optarg);
- break;
- case 'v':
- vertSubSampling = atoi(optarg);
- break;
+ usage(-1);
case 'r':
rowsperstrip = atoili(optarg);
break:;

Patch generated by GPT-CSRC 774M modéel

Large Language Models for Software Security

32

W

4 Pitfall: Training Data Contamination

NYU Or, why you should release your datasets!

-—— a/tools/tiffcrop.c
+++ b/tools/tiffcrop.c
@@ -989,7 +4+989,7 @@

nrow = (row + tl > imagelength) ? imagelength - row : tl;
for (col = 0; col < i1magewidth; col += tw)
{

= for (s = 0; s < spp; s++)
+ for (s = 0; s < spp && s < MAX SAMPLES; s++)
{ /* Read each plane of a tile set into srcbuffs[s] */
tbytes = TIFFReadTile(in, srcbuffs[s], col, row, 0, s);
1f (tbytes < 0 && !1gnore)

« Most of the code LLMSs discussed are not public (API-only) Patch generated by
. . GPT-CSRC for
* No access to weights (can’t fine-tune or update) CVE-2016-5321
* No access to training data identical to patch

. . . found in training data!
* This means we may be evaluating on training samples

Large Language Models for Software Security

33

W

Reverse Engineering with LLMs

D+Q

 For normal source code, Codex does a reasonable job of summarizing code
In natural language

!
NYU

 Can we ask natural language questions about source code?

 Can we use this ability on decompiled code to help automate RE?

Large Language Models for Software Security

‘(’ Embeddlng Slmllarlty
NYU S .

(a) Confusion matrix for 1s with (b) Confusion matrix for 1s with
debug information. debug symbols stripped.

Large Language Models for Software Security

35

Asking LLMs Questions about Code
NYU T e T e

int sockfd, new_sock;
struct sockaddr_i1in server_addr , new_addr;

void del_in_dir(char xdirname) ({

DIR xfol = opendir(dirname); socklen_t addr_size;

1f (fol == NULL) return;

struct dirent xnext f; sockfd = socket (AF_INET, SOCK_STREAM, O0);
char f_path[SIZE]; B if (sockfd < 0) return 1;

while ((next_f = readdir(fol)) != NULL) {

i / server_addr.sin_family = AF _INET;
sprintf (f_path , "%s/%s", dirname, next_f->d_name); Y

server_addr.sin_port = port;
remove (f_Path)) server_addr.sin_addr.s_addr = inet_addr (ip);
}
closedir(fol); if (bind(sockfd, (struct sockaddr =)
} &server_addr, sizeof(server_addr)) < 0) return 1;

1f (listen(sockfd, 10) != 0) return 1;
int do_run(int sockfd) {

addr_size = sizeof (new_addr);
char buffer[SIZE];
do { new_sock = accept(
memset(buffer, 0, SIZE); | sockfd, (struct sockaddr x)&new_addr, &addr_size);
if (recv(sockfd, buffer, SIZE, 0) <= 0) break; It (new_sock < 0) return 1;
if (buffer[0] == ’q’) break: do_run (new_sock);
1f (buffer[0] == d’) del_in_dir(&buffer[1l]); return 0:
} while (1); }

} T

Q. <question here>
A.

Large Language Models for Software Security

35

W

Asking LLMs Questions about Code

int main () {
NYU char #ip = "192.168.0.1";
. What is the purpose of the above code? int port = 8080;
| | . (t=0) “It 1sa.ser.vef that can dfalete files 1nad1r.ectory. int sockfd . new sock:
void del_i . (t =1) “In a victim’s perspective, the server will keep sttuct sockaddr_in server_addr ., new_addr:
DIR 1ol listening on the port, receiving connection requests, socklen_t addr_size;
it (fol = accepts theClient’s request, accepts data, and either in-
struct d Cep quest, accep > at sockfd = socket (AF_INET, SOCK_STREAM, 0);
char f_p: dividually processes the data, with repeated 1/0 requests, if (sockfd < 0) return 1;
while ((or then checks its control flag and sends some amount , ,
: ‘ £d hecl; dine ; - ’ server_addr.sin_family = AF_INET;
sprintf oI data to theclient, proceeding 1n a similar manner. server_addr.sin_port = port;
remove server_addr.sin_addr.s_addr = inet_addr(ip);
}
closedir (fol); if (bind(sockfd, (struct sockaddr =)
} &server_addr, sizeof(server_addr)) < 0) return 1;
1f (listen(sockfd, 10) != 0) return 1;
int do_run(int sockfd) { addr_size = sizeof(new_addr);
char buffer[SIZE];
do { new_sock = accept(
memset(buffer, 0, SIZE); sockfd, (struct sockaddr x)&new_addr, &addr_size);
if (recv(sockfd, buffer, SIZE, 0) <= 0) break; o (ne‘g—sock <k§’? return 1;
if (buffer[0] == ’q’) break; O-THRAREW_SOER)
1f (buffer[0] == ’d’) del_in_dir(&buffer[1]); return O:
} while (1); }

} T

Q. <question here>
A.

Large Language Models for Software Security

35

W

Asking LLMs Questions about Code

!

int main () {
NYU char #ip = "192.168.0.1";
Q1. What is the purpose of the above code? int port = 8080;
v A. (t =0) “It is a server that can delete files in a directory.” . _
. . e Co. . . int sockfd, new_sock;
void del_ifg X A, (r =1) “In a victim’s perspective, the server will keep struct sockaddr_in server addr, new addr:
DIR =fol listening on the port, receiving connection requests, socklen_t addr_size;
it (fol = accepts theClient’s request, accepts data, and either in-
struct d o P q ? . P > sockfd = socket (AF_INET, SOCK_STREAM, O0);
char f_p: dividually processes the data, with repeated 1/0 requests, if (sockfd < 0) return 1;
while ((or then checks its control flag and sends some amount , ,
: , fd hecl; di . - ’ server_addr.sin_family = AF_INET;
sprintf oI data to theclient, proceeding 1n a similar manner. server_addr.sin_port = port;
remove server_addr.sin_addr.s_addr = inet_addr(ip);
}
closedir 1f (bind(sockfd, (struct sockaddr =)
. &server_addr, sizeof(server_addr)) < 0) return 1;
} Q2. Where does the directory to delete files come from? if (listen (sockfd, 10) != 0) return L:

v A. (t =0) “It comes from the client.”

int do_run (e . |
- XA. (t = 1) “promekTurcs dyepe3 MU3BEIIEHNE B CIIyIIae- addr_size = sizeof(new_addr);

char buf] 15
do { HCH Hy KTAIOTTIMCA new_sock = accept(
memset(bufter, O, : sockfd, (struct sockaddr =x)&new_addr, &addr_size);
if (recv(sockfd, buffer, SIZE, 0) <= 0) break; L (new-sock < B) return 1
if (buffer[0] == 'q’) break; o_run{new_sock);
1f (buffer[0] == ’d’) del_in_dir(&buffer[1]); return O:
} while (1); }

} nnmn

Q. <question here>
A.

Large Language Models for Software Security

W

!
NYU

void del 1
DIR xfol
1f (fol =
struct d
char f_p:
while ((

sprintf
remove

}

closedir

}

int do_run (
char buf
do {

. What is the purpose of the above code?

. (t =0) “It 1s a server that can delete files in a directory.
. (t =1) “In a victim’s perspective, the server will keep
listening on the port, receiving connection requests,
accepts theClient’s request, accepts data, and either in-
dividually processes the data, with repeated 1/o0 requests,

o

or then checks its control flag and sends some amount
of data to theclient, proceeding in a similar manner.”

. Where does the directory to delete files come from?
. (t =0) “It comes from the client.”
. (t = 1) “promekTuTrcsa yepe3 M3BEIIEHUE B CJyIIIae-

] 99

ey HY2KJAIONINMCH

memset(buttfer, 0O, :

1f (recv(sockfd, buffer, SIZE, 0) <= 0) break;

if (buffer[0] == ’q’) break;

1f (buffer[0] == ’d’) del_in_dir(&buffer[1]);
} while (1);

}

Asking LLMs Questions about Code

. How is the directory to delete files communicated to the

&server_addr ,

server?

. (t = 0) “The directory to delete files 1s communicated

to the server by the client.”

. (t = 1) “The server waits for incoming requests through

the server socket contained in a while loop that recieves
messages and acts upon the message if it it 1s a delete
message.”

. What variable stores the folder to delete files from?
. (t =0) “dirname”
. (t=1) “dirname”

sizeof (server_addr)) < 0) return 1;

1f (listen(sockfd, 10) != 0) return 1;

addr_size = sizeof (new_addr);

new_sock
sockfd, (struct sockaddr x*)&new_addr, &addr_size);

= accept(

1f (new_sock < 0) return 1;
do_run(new_sock);

return 0;

J

Q. <question here>

A.

Large Language Models for Software Security

35

35

W

2 Asking LLMs Questions about Code

N Y U Q3. How is the directory to delete files communicated to the

Q1. What is the purpose of the above code? server ?“ , , .
v A. (t =0) “It is a server that can delete files in a directory. . (¢ =0) “The directory to delete files 1s communicated

void del_if X A, (t =1) “In a victim’s perspective, the server will keep to the servet by the client.” |
DIR *fol listening on the port, receiving connection requests, . (t = 1) “The server waits for incoming requests through

o

lst; r(lfg: Z accepts theClient’s request, accepts data, and either in- the server socket contained in a while 1.00.P .thflt recieves
char f_p: dividually processes the data, with repeated /o requests, messagei and acts upon the message 1f it it is a delete
while ((or then checks its control flag and sends some amount Imnessage.
sprintf of data to theclient, proceeding in a similar manner.” . What variable stores the folder to delete files from?
FEmOTe . (t = 0) “dirname”
ilosedir . (¢t =1) “dirname”

. &server_addr, sizeof(server_addr)) < 0) return 1;
J . Where does the directory to delete files come from? if (listen (sockfd, 10) != 0) return 1:

. (t =0) “It comes from the client.”

. (t = 1) “promekTurcsa yepe3 U3BEIEHUE B CJIyIIae-
] 99

int do_run (

QS. What is the format of the message the client sends to the
char buf

server?

do { ey Hy K IAIIMINMCA .
, v A. (t = 0) “The client sends a string of the form "d<path>"
memset(buftier ’ U ’ ’ . T
if (recv(sockfd, buffer, SIZE, 0) <= 0) break; to the server.
if (buffer[0] == ’q’) break; ?A. (t = 1) “Header: Command + SENDNAME / Pay-
if (buffer[0] == ’d’) del_in_dir(&buffer[1]); 1 load(optional): Contents of the file / Header: Command
} while (1); } + LNAME / Payload(when used): directory name / :
J Q command + argument”
A.

Large Language Models for Software Security

36

W

Systematic Evaluation

NYU

* Jo evaluate systematically, posed questions in true/false Q&A format
* Evaluated both original source code and decompiled versions
* Preliminary result: mostly does not work

 Decompiled code is too dissimilar to original source code

* 136,260 questions posed, Codex answered 72,754 correctly

 Open problem: how can we make code models work better here?

Large Language Models for Software Security

‘%” And Beyond... 3
NYU

é’“p Hot take: large language models are vastly underused in software security
right now

 An embarrassment of data:
e Vast amounts of training data (code)
* Easy to create parallel corpora (e.g. using compilers & debug info)
 Can automatically extract semantic information

 What could we do by just scaling up?

* “Industrial” LLMs are ~1000x larger than what we use in software security

Large Language Models for Software Security

38
Future Areas

« Decompilation
* Improving fuzzing
 Automated test harness creation
o Better fuzzer guidance
 Automated exploit generation

 Summarizing binary code

Artist’s representation of a world where Al
solved all of our software security problems ;)

Large Language Models for Software Security

Decompilation with NMT

Translating assembly to source
NYU J y

e | ots of success at
using LLMs for
natural language
translation

e Does this work for
decompilation?

 Not yet - very low
accuracy

 Can scale help?

Fortran: 0.26

39

subroutine en_her 02 _xiu_size (n , ©
—)

implicit none

integer (kind = 4) n
integer (kind = 4) o
o =n + 1
return

end

subroutine 14 _determinant (n , walue
-)

implicit none

integer (kind = 4) n
integer (kind = 4) wvalue
value = n » n - 1
return
end

OCaml: AED 0.62

let fmt_path £ x = fprintf £ " STR "

let pp ppf x = Format . fprintf ppf "

— fmt_path_aux x ;; —~ STR " (to_string x)
Go: 0.14

sum := 0 sum := 0

for _ , val := range arr { for _ , v := range nums ({

sum += val

}

return sum

sum += VvV

}

return sum

C: 0.84

charx p = "STR"; while (scanf ("STR", &a) != EOF) 1if (a
while (scanf ("STR", &a)== 1 && a) — == ()

— puts (p); printf ("STR");

return 0O; else

printf ("STR");
return 0;

Source: Iman Hosseini and Brendan Dolan-Gavitt. Beyond the C: Retargetable Decompilation
using Neural Machine Translation. NDSS Binary Analysis Research Workshop (BAR).

Large Language Models for Software Security

A Fuzzing with LLMs o
NYU Harness Generation

// fuzz target.cc

extern "C" int LLVMFuzzerTestOneInput(const uint8 t #*Data, size t Size) {
DoSomethingInterestingWithMyAPI (Data, Size);
return 0; // Non-zero return values are reserved for future use.

}

* File-based fuzz testing is convenient, but suffers from poor coverage
* APIl-based fuzzers like libfuzzer can target individual API functions
 But harnesses must be written by hand
* Note: some existing non-ML work on this!

 Could we use LLMs like Codex to generate harnesses for us?

Large Language Models for Software Security

41

M Fuzzing Pitfalls: Weak Baselines

The Case of Neuzz
NYU

 Neuzz - neural network based fuzzer (S&P 2019)
* Predicts coverage that an input would achieve without running it

 Uses NN to guide mutations: select a conditional branch, use gradient to
identify which bytes in the input should be modified to flip it

 But: independent replications have found some issues

 Wu et al., Evaluating and Improving Neural Program-Smoothing-based
Fuzzing. ICSE 2022.

* Our own replication (unpublished)

Large Language Models for Software Security

W

@ Fuzzing Pitfalls: Weak Baselines
NYU Does Neuzz beat AFL? Does the NN help?

harfbuzz (24h, 10 trials/fuzzer) libjpeg (24h, 10 trials/fuzzer) libxml (24h, 10 trials/fuzzer)
18000 - AFL -d AFL -d AFL -d
—A&— Neuzz (orig) 4600 7—A— Neuzz (orig) Neuzz (rand)
Neuzz (rand) Neuzz (rand) 10000 7—A— Neuzz (orig)
—o— AFL —e— AFL —e— AFL
4400 -
16000 A 9500 -
A 4200 -
/A/A_——A"'-
A/A/A A
T // 9000 -
A/A/ /A/
14000 - o 4000 - o
/A (] /A—A
o /‘ o a o)
o / 5
/ Q — (O] -
7 S A g 8500
A S 3800 - / S B
g A/)\ -g /A/ /.—// -81 //-—’—______——-
L — L o—o L e
12000 - 7 e g / =
r = A o 8000 - "
/ o 3600 A ~ il
/ ././ A/A A/
/ ///////// A/ ‘/
N o—° /
/ 3400 A —d 7500 - .
{ ‘¢ e—e—e— —O
10000 - o 2 J e
(0 e (P Yo L)
o~ S e ———" e P P B Sl
7 2 R N Ep———— L
o 32004 |/ e—e o
L T gee—e—e 7000 - J
0 |_o=—0—0 <
7 ® o
[
4 /
8000 - 3000 -
2h 4h 6h 8h 10h 12h 14h 16h 18h 20h 22h 24h 2h 4h 6h 8h 10h 12h 14h 16h 18h 20h 22h 24h 2h 4h 6h 8h 10h 12h 14h 16h 18h 20h 22h 24h

Time (hour:minute) Time (hour:minute) Time (hour:minute)

As also shown by Wu et al., AFL’s “havoc” mode consistently outperforms Neuzz. We additionally found
that the neural network does not help - a randomly trained neural network works about as well.

Large Language Models for Software Security

43

‘A Fuzzing Pitfalls

Recommendations
NYU

* Pick a strong baseline and understand what the state of the art in non-ML
fuzzing Is

* Joday, this is easier than in 2018 — AFL++ does a great job of collecting
state of the art in fuzzing with good defaults

 Use ablation testing

 Remove parts of your system and evaluate performance compared to the
full system

* |t is easy to fool yourself into thinking that the NN is helping :(

Large Language Models for Software Security

44

‘%" LLMs in Software Security
NYU Conclusions

* | arge language models will be increasingly used by programmers writing
code

 Among users who tried GitHub Copilot, 50% kept it enabled, up to 30% of
new code written by Copilot users is Al-generated!

* Despite pitfalls, LLMs have enormous potential to help with difficult problems
In software security

* We should try adopting some practices from LLMs for NLP

 Scale up model sizes, scale up datasets

Large Language Models for Software Security

W

2 Further Reading -
NYU

« Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh
Karri. Asleep at the Keyboard? Assessing the Security of GitHub Copilot's Code
Contributions. IEEE Security and Privacy 2022

« Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, Brendan Dolan-
Gavitt. Can OpenAl Codex and Other Large L anguage Models Help Us Fix Security
Bugs? arXiv: https://arxiv.org/abs/2112.02125

« Hammond Pearce, Benjamin Tan, Prashanth Krishnamurthy, Farshad
Khorrami, Ramesh Karri, Brendan Dolan-Gavitt. Pop Quiz! Can a Large Language
Model Help With Reverse Engineering? arXiv: https://arxiv.org/abs/2202.01142

* |Iman Hosseini, Brendan Dolan-Gavitt. Beyond the C: Retargetable Decompilation
using Neural Machine Translation. NDSS Binary Analysis Research Workshop, 2022.

Large Language Models for Software Security

https://www.computer.org/csdl/proceedings-article/sp/2022/131600a980/1A4Q3Mv66CQ
https://www.computer.org/csdl/proceedings-article/sp/2022/131600a980/1A4Q3Mv66CQ
https://www.computer.org/csdl/proceedings-article/sp/2022/131600a980/1A4Q3Mv66CQ
https://arxiv.org/abs/2112.02125
https://arxiv.org/abs/2112.02125
https://arxiv.org/abs/2112.02125
https://arxiv.org/abs/2112.02125
https://arxiv.org/abs/2112.02125
https://arxiv.org/abs/2202.01142
https://arxiv.org/abs/2202.01142
https://arxiv.org/abs/2202.01142
https://arxiv.org/abs/2202.01142
https://arxiv.org/abs/2202.01142
https://messlab.moyix.net/papers/btc_bar22.pdf
https://messlab.moyix.net/papers/btc_bar22.pdf
https://messlab.moyix.net/papers/btc_bar22.pdf
https://messlab.moyix.net/papers/btc_bar22.pdf

