
Brendan Dolan-Gavitt 
 
In collaboration with: Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Gustavo
Sandoval, Iman Hosseini, Prashanth Krishnamurthy, Farshad Khorrami, Ramesh Karri,
Siddharth Garg

Large Language Models for
Software Security
Prospects and Pitfalls

Large Language Models for Software Security

Surprising Progress in Code Models
Before 2021

• 2015: Karpathy’s Char-RNN, generating Linux kernel code

• 2019: GPT-2 “accidentally” learns some PHP and JavaScript

2

Char-RNN; Karpathy, 2015 GPT-2; OpenAI, 2015

Large Language Models for Software Security

Surprising Progress in Code Models
June 2021 - Present: Large Language Models (LLMs)

• 2021: OpenAI Codex - a large GPT-3-based model fine-tuned on code

• Released commercially as a code completion tool: GitHub Copilot

• 2022: DeepMind AlphaCode - Transformer (encoder/decoder)

• Reaches human-level (top 54%) performance in an online code competition
(Codeforces)

• Both systems treat source code as plain text, “predict next token”

• Trained on large volumes of code (e.g. all of GitHub)

3

Large Language Models for Software Security

The Road Ahead

• Given these new capabilities, what
are the implications for software
security?

• What are the security implications
when many people are using AI
code generators like GitHub
Copilot?

• How can research in software
security make use of LLMs?

• What areas could benefit? What
are the risks?

LLMs in Software Security 4

Generated by DALL-E mini, prompt: “a robot
walking down a road toward the horizon”

Large Language Models for Software Security

GPT-3, but on code

• Objective: predict token i given
tokens {1, ..., i-1}

• Model: Transformer (decoder-only)

• GPT-3 training data: WebText,
Wikipedia, CommonCrawl, etc.

• Codex: Fine-tuned on approximately
all of GitHub public repositories

• Copilot: commercial version of
Codex

Background: How Do Code LLMs Work? 5

Train

Fine-Tune

Large Language Models for Software Security

Autoregressive Sampling
How to generate text and code

6

public static void

Large Language Models for Software Security

Autoregressive Sampling
How to generate text and code

7

public static void

Token Probability

main 92%

add 6%

update 1%

insert 0.1%

{ 0.1%

\n 0.04%

Large Language Models for Software Security

Autoregressive Sampling
How to generate text and code

8

public static void

Token Probability

main 92%

add 6%

update 1%

insert 0.1%

{ 0.1%

\n 0.04%

Large Language Models for Software Security

Autoregressive Sampling
How to generate text and code

8

public static void

Token Probability

main 92%

add 6%

update 1%

insert 0.1%

{ 0.1%

\n 0.04%
mainpublic static void

Large Language Models for Software Security

Autoregressive Sampling
How to generate text and code

9

public static void

Token Probability

main 92%

add 6%

update 1%

insert 0.1%

{ 0.1%

\n 0.04%
mainpublic static void main

Large Language Models for Software Security

Autoregressive Sampling
How to generate text and code

9

public static void

Token Probability

main 92%

add 6%

update 1%

insert 0.1%

{ 0.1%

\n 0.04%
mainpublic static void

main

Large Language Models for Software Security

Autoregressive Sampling
How to generate text and code

9

public static void

mainpublic static void

main

Large Language Models for Software Security

Autoregressive Sampling
How to generate text and code

10

public static void

mainpublic static void

main

Token Probability

(String 97%

␣ 2%

\n 0.01%

() 0.003%

{ 0.001%

[0.0006%

Large Language Models for Software Security

Github Copilot 11

Large Language Models for Software Security

Copilot Writes Vulnerable Code 13

SQL Injection

Large Language Models for Software Security

Testing Other Languages 14

Large Language Models for Software Security

Testing Other Languages 14

Large Language Models for Software Security

How secure is Copilot’s code?

15

Large Language Models for Software Security

Measuring Copilot Vulnerabilities

• Created scenarios (code snippets to
complete) for MITRE CWE Top 25

• Ask Copilot for 25 completions for each

• How to evaluate vulnerability? CodeQL

• Extensible query language, built-in
queries for many CWEs

• Free for academic use

• Static analysis tool owned by GitHub;
seems fair to use it to test Copilot :)

16

Large Language Models for Software Security

CWE Top 25 Results

• Examined 18 different vulnerability classes (CWEs) and 54 scenarios, used
Copilot to generate 1,084 total valid programs

• 42% of generated programs were vulnerable

• Notable findings

• Higher vulnerability rates for C (51%) than Python (38%)

• Common problems: sequence/attention errors (UAF), pointers & array
lengths, bad hashing algorithms

• Best at avoiding web flaws: auth, XSS, permissions, etc.

17

Large Language Models for Software Security

The art of prompting

• Codex/Copilot only sees “text”

• Generated code quality could
be affected by semantically
meaningless features

• Comments, variable names,
whitespace, etc.

• We explored this axis by
evaluating variants of CWE-89
(SQL Injection)

What Influences Vulnerable Code Gen? 18

Large Language Models for Software Security

Diversity of Prompt: Results 19

Large Language Models for Software Security

Diversity of Prompt: Results 20

Large Language Models for Software Security

Diversity of Prompt: Results 21

Large Language Models for Software Security

Asleep at the Keyboard

• Open Problem: how can we fix this?

• Fine-tuning to decrease probability of generating vulnerable code?

• Some kind of verification or validation?

• Open Question: does this matter in practice?

• Maybe humans will catch these issues in practice?

• Maybe humans write vulnerabilities at same or higher rates?

22

Large Language Models for Software Security

Preview: Codex User Study
⚠ Research still in progress ⚠

• We ran a user study with n = 60 CS undergraduate and graduate students

• Randomly gave half access to an instrumented Visual Studio Code plugin that
mimics Copilot using OpenAI Codex

• Task: basic linked list implementation in C

• Students with Codex were more likely to finish (26 vs 17)

• Students with Codex had

• More passing tests

• Fewer security problems

23

Large Language Models for Software Security

Codex User Study
⚠ Preliminary Results ⚠

24

Large Language Models for Software Security

Open source is ... open

• Anyone can upload code to
GitHub

• That code may then be included as
training data for future code
models!

• Schuster et al. studied this attack
vector

• Were able to cause a GPT-2-
based code generator to
suggest insecure cryptographic
practices

Pitfalls: Training Data Poisoning 25

One week after Copilot released!

USENIX Security 2021

Large Language Models for Software Security

• Basic idea: use Codex et al. as a code
generator to replace vulnerable code

• Use prompt engineering to guide
model toward generating fixed
versions

• Use functional and security oracles
to check if generated code fixes the
vuln without breaking the program ⚠

• For most programs, the functional
tests are weak proxies for actual
correctness!

Fixing Vulnerabilities with LLMs 26

Large Language Models for Software Security

Vulnerability Repair

• We start with a vulnerable program and some error report describing the vuln
(e.g., from CodeQL or Address Sanitizer)

• Use this to remove code at the vulnerable location, add a comment describing
the problem, and have LLM fill in a fixed version

• Take candidate fixes, test if vuln is still present and if all functional tests pass

• When both security and functional tests pass, we say it’s fixed*

27

Large Language Models for Software Security

Repair Prompt 28

Large Language Models for Software Security

Vulnerability Repair: Models and Results

Models

• Codex (OpenAI; DaVinci & Cushman)

• PolyCoder (Xu et al.; 2.7B)

• Jurassic J-1 (AI21; 178B and 7.8B)

• GPT-CSRC (Ours; 774M)

29

Preliminary evaluation

• Repaired 100% of our own
synthetically generated
vulnerabilities

• Repaired 67% of real-world
vulnerabilities in our dataset (12
historical CVEs, subset of ExtractFix
dataset)

Large Language Models for Software Security

Successful Repair
libtiff CVE-2016-5321

30

Large Language Models for Software Security

Pitfall: Inadequate Oracles
libtiff CVE-2016-3623

• The language model fixed the
vulnerability... by removing the
problematic options!

• Developer tests are weak proxies
for program functionality

• Open problem: how can we
strengthen these proxies?

• Can we get LLMs to write better
functional tests as well?

31

--- a/rgb2ycbcr.c
+++ b/rgb2ycbcr.c
@@ -94,11 +94,7 @@
 usage(-1);
 break;
 case 'h':
- horizSubSampling = atoi(optarg);
- break;
- case 'v':
- vertSubSampling = atoi(optarg);
- break;
+ usage(-1);
 case 'r':
 rowsperstrip = atoi(optarg);
 break;

Patch generated by GPT-CSRC 774M model

Large Language Models for Software Security

Or, why you should release your datasets!

• Most of the code LLMs discussed are not public (API-only)

• No access to weights (can’t fine-tune or update)

• No access to training data

• This means we may be evaluating on training samples

Pitfall: Training Data Contamination 32

--- a/tools/tiffcrop.c
+++ b/tools/tiffcrop.c
@@ -989,7 +989,7 @@
 nrow = (row + tl > imagelength) ? imagelength - row : tl;
 for (col = 0; col < imagewidth; col += tw)
 {
- for (s = 0; s < spp; s++)
+ for (s = 0; s < spp && s < MAX_SAMPLES; s++)
 { /* Read each plane of a tile set into srcbuffs[s] */
 tbytes = TIFFReadTile(in, srcbuffs[s], col, row, 0, s);
 if (tbytes < 0 && !ignore)

Patch generated by
GPT-CSRC for

CVE-2016-5321...
identical to patch

found in training data!

Large Language Models for Software Security

Reverse Engineering with LLMs

• For normal source code, Codex does a reasonable job of summarizing code
in natural language

• Can we ask natural language questions about source code?

• Can we use this ability on decompiled code to help automate RE?

33

+

Large Language Models for Software Security

Embedding Similarity 34

Large Language Models for Software Security

Asking LLMs Questions about Code 35

Large Language Models for Software Security

Asking LLMs Questions about Code 35

Large Language Models for Software Security

Asking LLMs Questions about Code 35

Large Language Models for Software Security

Asking LLMs Questions about Code 35

Large Language Models for Software Security

Asking LLMs Questions about Code 35

Large Language Models for Software Security

Systematic Evaluation

• To evaluate systematically, posed questions in true/false Q&A format

• Evaluated both original source code and decompiled versions

• Preliminary result: mostly does not work

• Decompiled code is too dissimilar to original source code

• 136,260 questions posed, Codex answered 72,754 correctly

• Open problem: how can we make code models work better here?

36

Large Language Models for Software Security

And Beyond...

• Hot take: large language models are vastly underused in software security
right now

• An embarrassment of data:

• Vast amounts of training data (code)

• Easy to create parallel corpora (e.g. using compilers & debug info)

• Can automatically extract semantic information

• What could we do by just scaling up?

• “Industrial” LLMs are ~1000x larger than what we use in software security

37

🔥

Large Language Models for Software Security

• Decompilation

• Improving fuzzing

• Automated test harness creation

• Better fuzzer guidance

• Automated exploit generation

• Summarizing binary code

Future Areas 38

Artist’s representation of a world where AI
solved all of our software security problems ;)

Large Language Models for Software Security

Decompilation with NMT
Translating assembly to source

• Lots of success at
using LLMs for
natural language
translation

• Does this work for
decompilation?

• Not yet - very low
accuracy

• Can scale help?

39

Source: Iman Hosseini and Brendan Dolan-Gavitt. Beyond the C: Retargetable Decompilation
using Neural Machine Translation. NDSS Binary Analysis Research Workshop (BAR).

Large Language Models for Software Security

Fuzzing with LLMs
Harness Generation

• File-based fuzz testing is convenient, but suffers from poor coverage

• API-based fuzzers like libfuzzer can target individual API functions

• But harnesses must be written by hand

• Note: some existing non-ML work on this!

• Could we use LLMs like Codex to generate harnesses for us?

40

// fuzz_target.cc
extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
 DoSomethingInterestingWithMyAPI(Data, Size);
 return 0; // Non-zero return values are reserved for future use.
}

Large Language Models for Software Security

Fuzzing Pitfalls: Weak Baselines
The Case of Neuzz

• Neuzz - neural network based fuzzer (S&P 2019)

• Predicts coverage that an input would achieve without running it

• Uses NN to guide mutations: select a conditional branch, use gradient to
identify which bytes in the input should be modified to flip it

• But: independent replications have found some issues

• Wu et al., Evaluating and Improving Neural Program-Smoothing-based
Fuzzing. ICSE 2022.

• Our own replication (unpublished)

41

Large Language Models for Software Security

Fuzzing Pitfalls: Weak Baselines
Does Neuzz beat AFL? Does the NN help?

42

As also shown by Wu et al., AFL’s “havoc” mode consistently outperforms Neuzz. We additionally found
that the neural network does not help - a randomly trained neural network works about as well.

Large Language Models for Software Security

Fuzzing Pitfalls
Recommendations

• Pick a strong baseline and understand what the state of the art in non-ML
fuzzing is

• Today, this is easier than in 2018 – AFL++ does a great job of collecting
state of the art in fuzzing with good defaults

• Use ablation testing

• Remove parts of your system and evaluate performance compared to the
full system

• It is easy to fool yourself into thinking that the NN is helping :(

43

Large Language Models for Software Security

LLMs in Software Security
Conclusions

• Large language models will be increasingly used by programmers writing
code

• Among users who tried GitHub Copilot, 50% kept it enabled, up to 30% of
new code written by Copilot users is AI-generated!

• Despite pitfalls, LLMs have enormous potential to help with difficult problems
in software security

• We should try adopting some practices from LLMs for NLP

• Scale up model sizes, scale up datasets

44

Large Language Models for Software Security

Further Reading

• Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh
Karri. Asleep at the Keyboard? Assessing the Security of GitHub Copilot's Code
Contributions. IEEE Security and Privacy 2022

• Hammond Pearce, Benjamin Tan, Baleegh Ahmad, Ramesh Karri, Brendan Dolan-
Gavitt. Can OpenAI Codex and Other Large Language Models Help Us Fix Security
Bugs? arXiv: https://arxiv.org/abs/2112.02125

• Hammond Pearce, Benjamin Tan, Prashanth Krishnamurthy, Farshad
Khorrami, Ramesh Karri, Brendan Dolan-Gavitt. Pop Quiz! Can a Large Language
Model Help With Reverse Engineering? arXiv: https://arxiv.org/abs/2202.01142

• Iman Hosseini, Brendan Dolan-Gavitt. Beyond the C: Retargetable Decompilation
using Neural Machine Translation. NDSS Binary Analysis Research Workshop, 2022.

45

https://www.computer.org/csdl/proceedings-article/sp/2022/131600a980/1A4Q3Mv66CQ
https://www.computer.org/csdl/proceedings-article/sp/2022/131600a980/1A4Q3Mv66CQ
https://www.computer.org/csdl/proceedings-article/sp/2022/131600a980/1A4Q3Mv66CQ
https://arxiv.org/abs/2112.02125
https://arxiv.org/abs/2112.02125
https://arxiv.org/abs/2112.02125
https://arxiv.org/abs/2112.02125
https://arxiv.org/abs/2112.02125
https://arxiv.org/abs/2202.01142
https://arxiv.org/abs/2202.01142
https://arxiv.org/abs/2202.01142
https://arxiv.org/abs/2202.01142
https://arxiv.org/abs/2202.01142
https://messlab.moyix.net/papers/btc_bar22.pdf
https://messlab.moyix.net/papers/btc_bar22.pdf
https://messlab.moyix.net/papers/btc_bar22.pdf
https://messlab.moyix.net/papers/btc_bar22.pdf

